note/知识图谱/教科书-数学/all_副本/knowledge_graph_inserts.sql
2025-11-19 10:16:05 +08:00

10574 lines
682 KiB
SQL
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- 首先创建一个Schema来组织知识图谱相关的表这是一种好的实践
CREATE SCHEMA IF NOT EXISTS kg;
-- 1. 知识点表 (Knowledge Table)
CREATE TABLE IF NOT EXISTS kg.knowledge (
id VARCHAR(50) PRIMARY KEY, -- 对应 "编号"
level VARCHAR(50), -- 对应 "层次"
name TEXT NOT NULL, -- 对应 "名称"
type VARCHAR(50), -- 对应 "类型"
core_content JSONB, -- 【JSONB】用于存储复杂的JSON对象
principle JSONB, -- 【JSONB】
conditions JSONB, -- 【JSONB】
prerequisites VARCHAR(50)[], -- 【TEXT[]】用于存储编号数组
related_content JSONB, -- 【JSONB】
importance VARCHAR(50), -- 对应 "重要程度"
exam_ways TEXT[] -- 【TEXT[]】用于存储字符串数组
);
-- 2. 方法表 (Method Table)
CREATE TABLE IF NOT EXISTS kg.methods (
id VARCHAR(50) PRIMARY KEY, -- 对应 "编号"
name TEXT NOT NULL, -- 对应 "名称"
type VARCHAR(50), -- 对应 "类型"
scenarios JSONB, -- 【JSONB】适用场景
steps JSONB, -- 【JSONB】方法步骤
math_ideas TEXT[], -- 【TEXT[]】数学思想
strategy TEXT, -- 解题策略
prerequisite_methods VARCHAR(50)[], -- 【TEXT[]】前置方法
common_errors JSONB, -- 【JSONB】常见错误
difficulty SMALLINT, -- 难度等级
location TEXT -- 教材位置
);
-- 3. 题目表 (Problem Table)
CREATE TABLE IF NOT EXISTS kg.problems (
id VARCHAR(50) PRIMARY KEY, -- 对应 "编号"
type VARCHAR(50), -- 题目类型
source_info JSONB, -- 【JSONB】来源信息
content JSONB, -- 【JSONB】题目内容
question_types JSONB, -- 【JSONB】题型分类
difficulty JSONB -- 【JSONB】难度评估
);
-- 4. 关联表 (Link Tables) - 用于处理多对多关系
-- 方法支撑的知识点
CREATE TABLE IF NOT EXISTS kg.method_knowledge_link (
method_id VARCHAR(50) REFERENCES kg.methods(id),
knowledge_id VARCHAR(50) REFERENCES kg.knowledge(id),
PRIMARY KEY (method_id, knowledge_id)
);
-- 题目考查的知识点
CREATE TABLE IF NOT EXISTS kg.problem_knowledge_link (
problem_id VARCHAR(50) REFERENCES kg.problems(id),
knowledge_id VARCHAR(50) REFERENCES kg.knowledge(id),
-- 可以增加一个字段表示是“主要考查”还是“辅助涉及”
relevance VARCHAR(20) DEFAULT '主要考查',
PRIMARY KEY (problem_id, knowledge_id, relevance)
);
-- 题目使用的方法
CREATE TABLE IF NOT EXISTS kg.problem_method_link (
problem_id VARCHAR(50) REFERENCES kg.problems(id),
method_id VARCHAR(50) REFERENCES kg.methods(id),
PRIMARY KEY (problem_id, method_id)
);
-- --- INSERT DATA ---
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-01',
'二级',
'分类加法计数原理',
'原理/法则',
'{"定义": "完成一件事有两类不同方案在第1类方案中有m种不同的方法在第2类方案中有n种不同的方法那么完成这件事共有N=m+n种不同的方法", "公式": "$N = m + n$", "关键特征": "各类方法互不相同,用其中任何一种方法都可以完成这件事"}',
'{"为什么这样建立": "分类加法计数原理解决了''分类''问题的计数,其中各种方法相互独立,用其中任何一种方法都可以做完这件事", "核心特征": ["各类方法相互独立", "每类方法都能单独完成整件事", "各类方法之间互不重叠"]}',
'{"必要性": "解决计数问题的基础方法", "特殊说明": "分类要做到''不重不漏''"}',
ARRAY['加法运算', '集合概念'],
'{"包含的子知识点": ["K6-1-1-02 分步乘法计数原理"], "相关方法": ["分类讨论", "集合分类"], "教材位置": "选择性必修第6章6.1节 P14-18"}',
'核心',
ARRAY['分类计数应用', '方法选择判断', '实际计数问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-02',
'二级',
'分步乘法计数原理',
'原理/法则',
'{"定义": "完成一件事需要两个步骤做第1步有m种不同的方法做第2步有n种不同的方法那么完成这件事共有N=m×n种不同的方法", "公式": "$N = m \\times n$", "关键特征": "各个步骤中的方法互相依存,只有每一个步骤都完成才算做完这件事"}',
'{"为什么这样建立": "分步乘法计数原理解决了''分步''问题的计数,其中各个步骤中的方法互相依存,需要所有步骤都完成", "核心特征": ["步骤之间相互依存", "必须完成所有步骤才能完成整件事", "每个步骤的方法数确定"]}',
'{"必要性": "解决复杂计数问题的重要方法", "特殊说明": "分步要做到''步骤完整''"}',
ARRAY['乘法运算', 'K6-1-1-01 分类加法计数原理'],
'{"包含的子知识点": [], "相关方法": ["分步分析", "树状图"], "教材位置": "选择性必修第6章6.1节 P18-26"}',
'核心',
ARRAY['分步计数应用', '树状图分析', '复杂计数问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-1-01',
'二级',
'排列的概念',
'概念/定义',
'{"定义": "从$n$个不同元素中取出$m(m \\le n)$个元素,并按照一定的顺序排成一列,叫做从$n$个不同元素中取出$m$个元素的一个排列", "关键特征": "元素的互异性和顺序性"}',
'{"为什么这样定义": "排列是解决有序选取问题的数学概念,强调选取元素的顺序关系", "核心特征": ["元素互不相同", "考虑元素的排列顺序", "从不同元素中选取部分元素"]}',
'{"必要性": "研究有序计数问题的基础", "特殊说明": "两个排列相同的充要条件是元素完全相同且排列顺序相同"}',
ARRAY['K6-1-1-02 分步乘法计数原理', '有序性概念'],
'{"包含的子知识点": ["K6-2-2-01 排列数"], "相关方法": ["有序排列", "位置分析"], "教材位置": "选择性必修第6章6.2.1节 P41-46"}',
'核心',
ARRAY['排列判断', '有序计数', '实际应用问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-2-01',
'二级',
'排列数',
'公式/概念',
'{"定义": "从$n$个不同元素中取出$m(m \\le n)$个元素的所有不同排列的个数,叫做从$n$个不同元素中取出$m$个元素的排列数", "符号": "$A_n^m$", "公式1": "$A_n^m = n(n-1)(n-2)\\cdots(n-m+1)$", "公式2": "$A_n^m = \\frac{n!}{(n-m)!}$"}',
'{"为什么这样建立": "排列数给出了有序选取问题的计数公式,避免了逐个列举的繁琐", "核心特征": ["基于分步乘法计数原理", "考虑选取顺序", "阶乘形式的简洁表达"]}',
'{"必要性": "计算排列数量的基础公式", "特殊说明": "当$m=n$时,$A_n^n = n!$,称为全排列"}',
ARRAY['K6-2-1-01 排列的概念', '阶乘概念', 'K6-1-1-02 分步乘法计数原理'],
'{"包含的子知识点": ["K6-2-3-01 组合的概念"], "相关方法": ["排列计算", "阶乘运算"], "教材位置": "选择性必修第6章6.2.2节 P46-55"}',
'核心',
ARRAY['排列数计算', '公式应用', '化简求值']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-3-01',
'二级',
'组合的概念',
'概念/定义',
'{"定义": "从$n$个不同元素中取出$m(m \\le n)$个元素作为一组,叫做从$n$个不同元素中取出$m$个元素的一个组合", "关键特征": "只考虑选取的元素,不考虑选取的顺序"}',
'{"为什么这样定义": "组合是解决无序选取问题的数学概念,关注的是选取哪些元素而不关注顺序", "核心特征": ["元素互不相同", "不考虑元素的排列顺序", "从不同元素中选取部分元素组成一组"]}',
'{"必要性": "研究无序计数问题的基础", "特殊说明": "两个组合只要元素相同就相同,不论顺序如何"}',
ARRAY['K6-2-1-01 排列的概念', '无序性概念'],
'{"包含的子知识点": ["K6-2-4-01 组合数"], "相关方法": ["无序选取", "分组方法"], "教材位置": "选择性必修第6章6.2.3节 P56-62"}',
'核心',
ARRAY['组合判断', '无序计数', '与排列的区分']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-4-01',
'二级',
'组合数',
'公式/概念',
'{"定义": "从$n$个不同元素中取出$m(m \\le n)$个元素的所有不同组合的个数,叫做从$n$个不同元素中取出$m$个元素的组合数", "符号": "$C_n^m$或$\\binom{n}{m}$", "公式1": "$C_n^m = \\frac{A_n^m}{A_m^m} = \\frac{n(n-1)\\cdots(n-m+1)}{m!}$", "公式2": "$C_n^m = \\frac{n!}{m!(n-m)!}$"}',
'{"为什么这样建立": "组合数给出了无序选取问题的计数公式,通过排列数与全排列的比值得到", "核心特征": ["基于排列数的关系推导", "不考虑选取顺序", "对称性:$C_n^m = C_n^{n-m}$"]}',
'{"必要性": "计算组合数量的基础公式", "特殊说明": "规定$C_n^0 = 1$"}',
ARRAY['K6-2-3-01 组合的概念', 'K6-2-2-01 排列数'],
'{"包含的子知识点": ["K6-2-4-02 组合数的性质"], "相关方法": ["组合计算", "性质应用"], "教材位置": "选择性必修第6章6.2.4节 P63-73"}',
'核心',
ARRAY['组合数计算', '公式化简', '性质证明应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-4-02',
'三级',
'组合数的性质',
'定理/性质',
'{"性质1": "$C_n^m = C_n^{n-m}$", "性质2": "$C_{n+1}^m = C_n^m + C_n^{m-1}$"}',
'{"为什么这样建立": "组合数的性质反映了组合的内在规律,简化了组合数的计算和证明", "核心特征": ["对称性选取m个元素等于选取n-m个元素", "递推性:可以从较小组合数递推得到较大组合数", "与杨辉三角的对应关系"]}',
'{"必要性": "组合数化简和计算的重要工具", "特殊说明": "性质在$m=n$时也成立"}',
ARRAY['K6-2-4-01 组合数'],
'{"包含的子知识点": [], "相关方法": ["组合数化简", "递推关系", "杨辉三角"], "教材位置": "选择性必修第6章6.2.4节 P73-77"}',
'重要',
ARRAY['性质证明', '组合数化简', '递推应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-3-1-01',
'二级',
'二项式定理',
'定理/公式',
'{"定理": "$(a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + \\cdots + C_n^ka^{n-k}b^k + \\cdots + C_n^nb^n$,其中$n \\in \\mathbb{N}^*$", "通项公式": "$T_{k+1} = C_n^ka^{n-k}b^k$(第$k+1$项)", "特殊情况": "$(1+x)^n = C_n^0 + C_n^1x + C_n^2x^2 + \\cdots + C_n^nx^n$"}',
'{"为什么这样建立": "二项式定理是计数原理在多项式展开中的应用,给出了二项式展开的一般规律", "核心特征": ["基于计数原理推导", "系数为组合数", "指数递减递增规律", "项数为n+1"]}',
'{"必要性": "二项式展开的理论基础", "特殊说明": "适用于任意正整数次幂的二项式展开"}',
ARRAY['K6-2-4-01 组合数', '多项式乘法', 'K6-1-1-02 分步乘法计数原理'],
'{"包含的子知识点": ["K6-3-2-01 二项式系数的性质"], "相关方法": ["多项式展开", "通项应用"], "教材位置": "选择性必修第6章6.3.1节 P78-88"}',
'核心',
ARRAY['二项式展开', '通项公式应用', '特定项系数求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-3-2-01',
'三级',
'二项式系数的性质',
'性质/特征',
'{"对称性": "与首末两端''等距离''的两个二项式系数相等,即$C_n^k = C_n^{n-k}$", "增减性与最大值": "当$k < \\frac{n+1}{2}$时,$C_n^k$随$k$的增加而增大;当$k > \\frac{n+1}{2}$时,$C_n^k$随$k$的增加而减小", "各系数和": "$C_n^0 + C_n^1 + \\cdots + C_n^n = 2^n$", "奇偶项系数和": "$C_n^0 + C_n^2 + C_n^4 + \\cdots = C_n^1 + C_n^3 + C_n^5 + \\cdots = 2^{n-1}$"}',
'{"为什么研究这些性质": "二项式系数的性质反映了展开式系数的内在规律,便于分析展开式的特征", "核心特征": ["对称分布", "中间项最大", "总和为2的幂次", "奇偶项系数和相等"]}',
'{"必要性": "分析二项式展开特征的重要工具", "特殊说明": "当$n$为偶数时,中间一项取得最大值;当$n$为奇数时,中间两项相等且同时取得最大值"}',
ARRAY['K6-3-1-01 二项式定理', 'K6-2-4-01 组合数'],
'{"包含的子知识点": [], "相关方法": ["系数分析", "性质应用", "杨辉三角"], "教材位置": "选择性必修第6章6.3.2节 P89-99"}',
'重要',
ARRAY['性质应用', '系数和计算', '最大值求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-2-02',
'三级',
'全排列',
'概念/公式',
'{"定义": "$n$个不同的元素全部取出的一个排列,叫做$n$个元素的一个全排列", "公式": "$A_n^n = n! = n \\times (n-1) \\times \\cdots \\times 2 \\times 1$", "规定": "$0! = 1$"}',
'{"为什么这样定义": "全排列是排列的特殊情况,是理解阶乘概念和排列数公式的基础", "核心特征": ["取出所有元素", "考虑排列顺序", "用阶乘表示"]}',
'{"必要性": "排列数公式推导的基础", "特殊说明": "全排列数等于正整数1到n的连乘积"}',
ARRAY['K6-2-2-01 排列数', '阶乘概念'],
'{"包含的子知识点": [], "相关方法": ["阶乘计算", "排列应用"], "教材位置": "选择性必修第6章6.2.2节 P52-54"}',
'重要',
ARRAY['全排列计算', '阶乘运算', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-03',
'三级',
'两个计数原理的比较',
'方法/比较',
'{"分类加法原理": "针对''分类''问题,各类方法相互独立,用任何一种方法都可以完成这件事", "分步乘法原理": "针对''分步''问题,各个步骤互相依存,只有完成所有步骤才能完成这件事", "选择标准": "分析要完成''一件事''是什么,判断需要分类还是分步"}',
'{"为什么需要比较": "正确区分两个原理是解决计数问题的关键,避免混淆使用", "核心特征": ["分类:独立性,任选其一", "分步:依存性,缺一不可", "判断依据:是否需要每个步骤都完成"]}',
'{"必要性": "正确选择计数方法的基础", "特殊说明": "有些复杂问题可能需要同时运用两个原理"}',
ARRAY['K6-1-1-01 分类加法计数原理', 'K6-1-1-02 分步乘法计数原理'],
'{"包含的子知识点": [], "相关方法": ["原理选择", "综合应用"], "教材位置": "选择性必修第6章6.1节 P26-29"}',
'重要',
ARRAY['原理选择', '方法判断', '综合应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-5-01',
'三级',
'排列与组合的关系',
'关系/方法',
'{"联系": "都是从$n$个不同元素中取出$m(m \\le n)$个元素", "区别": "排列与元素的顺序有关,组合与元素的顺序无关", "数量关系": "$A_n^m = C_n^m \\times A_m^m$,即排列数等于组合数乘以$m$个元素的全排列数"}',
'{"为什么研究关系": "理解排列与组合的关系有助于正确区分问题类型和选择计算方法", "核心特征": ["相同的选取过程", "不同的顺序要求", "可以通过组合数计算排列数"]}',
'{"必要性": "区分排列问题和组合问题的关键", "特殊说明": "顺序是否影响结果是区分排列与组合的重要标志"}',
ARRAY['K6-2-2-01 排列数', 'K6-2-4-01 组合数'],
'{"包含的子知识点": [], "相关方法": ["问题类型判断", "公式推导"], "教材位置": "选择性必修第6章6.2.3节 P56-62"}',
'重要',
ARRAY['排列组合区分', '关系应用', '问题类型判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-1-01',
'二级',
'实数大小关系的基本事实',
'定理/性质',
'{"定义": "关于两个实数大小比较的基本判断标准", "关键要素": ["作差比较", "符号判定"], "符号表示": "a > b ⇔ a-b > 0, a = b ⇔ a-b = 0, a < b ⇔ a-b < 0"}',
'{"为什么这样定义": "基于数轴上点的位置关系建立实数大小的判定标准", "核心特征": ["等价性:大小关系与差的符号完全等价", "可操作性:通过计算差来比较大小"]}',
'{"必要性": "比较两个实数大小时的基础依据", "特殊说明": "是比较法的理论基础"}',
NULL,
'{"包含的子知识点": [], "常见混淆": "注意等价关系的双向性", "教材位置": "必修1 第2章2.1节 P42-43"}',
'核心',
ARRAY['作差比较法', '实数大小比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-2-01',
'二级',
'等式的基本性质',
'定理/性质',
'{"定义": "等式在运算中保持不变性的基本规律", "关键要素": ["运算不变性", "等式变形"], "符号表示": "a = b ⇒ b = a, a = b, b = c ⇒ a = c, a = b ⇒ a ± c = b ± c, a = b ⇒ ac = bc, a = b, c ≠ 0 ⇒ a/c = b/c"}',
'{"为什么这样定义": "反映相等关系自身的特性和运算中的不变性", "核心特征": ["对称性:可交换等式两边", "传递性:等式的传递关系", "运算一致性:四则运算保持等式成立"]}',
'{"必要性": "等式变形和求解的基础", "特殊说明": "除法运算中除数不能为零"}',
NULL,
'{"包含的子知识点": [], "常见混淆": "等式性质与不等式性质的区别", "教材位置": "必修1 第2章2.1节 P44"}',
'重要',
ARRAY['等式变形', '方程求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-2-02',
'二级',
'不等式的基本性质',
'定理/性质',
'{"定义": "不等式在运算中保持方向性或改变方向性的基本规律", "关键要素": ["方向性", "运算规则"], "符号表示": "a > b ⇔ b < a, a > b, b > c ⇒ a > c, a > b ⇒ a + c > b + c, a > b, c > 0 ⇒ ac > bc, a > b, c < 0 ⇒ ac < bc"}',
'{"为什么这样定义": "反映不等关系在运算中的变化规律", "核心特征": ["方向性:乘以负数时方向改变", "传递性:可传递大小关系", "加法一致性:同加同数方向不变"]}',
'{"必要性": "不等式变形和求解的基础", "特殊说明": "乘除以负数时要改变不等号方向"}',
ARRAY['K2-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "不等式性质与等式性质的主要区别", "教材位置": "必修1 第2章2.1节 P44-46"}',
'核心',
ARRAY['不等式变形', '方向判断', '性质证明']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-2-03',
'三级',
'重要不等式',
'定理/性质',
'{"定义": "对于任意实数a,b都有a²+b²≥2ab", "关键要素": ["平方和", "两倍积", "不等关系"], "符号表示": "∀a,b∈Ra²+b²≥2ab"}',
'{"为什么这样定义": "由完全平方公式推导得出,反映平方和与两倍积的大小关系", "核心特征": ["普适性:对任意实数成立", "等号条件当且仅当a=b时等号成立"]}',
'{"必要性": "证明不等式、求最值的基础", "特殊说明": "是基本不等式的理论依据"}',
ARRAY['K2-1-1-01'],
'{"包含的子知识点": ["K2-1-2-04"], "常见混淆": "与基本不等式的区别", "教材位置": "必修1 第2章2.1节 P43-44"}',
'重要',
ARRAY['不等式证明', '最值问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-2-04',
'二级',
'基本不等式',
'定理/性质',
'{"定义": "两个正数的算术平均数不小于它们的几何平均数", "关键要素": ["算术平均数", "几何平均数", "不等关系"], "符号表示": "√ab ≤ (a+b)/2 (a>0,b>0)"}',
'{"为什么这样定义": "由重要不等式在正数范围内推导得出", "核心特征": ["正数条件:只适用于正数", "等号条件当且仅当a=b时等号成立", "几何意义:半径与弦长的关系"]}',
'{"必要性": "求最值问题的重要工具", "特殊说明": "a,b必须为正数"}',
ARRAY['K2-1-2-03'],
'{"包含的子知识点": [], "常见混淆": "使用条件容易忽略正数要求", "教材位置": "必修1 第2章2.2节 P48-50"}',
'核心',
ARRAY['最值求解', '不等式证明', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-2-05',
'三级',
'基本不等式变式',
'公式',
'{"定义": "基本不等式的各种变形形式", "关键要素": ["等价变形", "应用拓展"], "符号表示": "a² + b² ≥ 2ab, a + b ≥ 2√ab, ab ≤ ((a+b)/2)², a/b + b/a ≥ 2"}',
'{"为什么这样定义": "通过代数变形得到不同形式,适用于不同问题", "核心特征": ["等价性:各形式相互等价", "针对性:不同形式适用不同场景"]}',
'{"必要性": "灵活解决不同类型的最值和不等式问题", "特殊说明": "注意每种形式的使用条件"}',
ARRAY['K2-1-2-04'],
'{"包含的子知识点": [], "常见混淆": "不同变式的使用条件和适用范围", "教材位置": "必修1 第2章2.2节"}',
'重要',
ARRAY['灵活应用', '最值计算', '不等式证明']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-3-01',
'二级',
'一元二次不等式的定义',
'概念/定义',
'{"定义": "只含有一个未知数并且未知数的最高次数是2的不等式", "关键要素": ["一元", "二次", "不等式"], "符号表示": "ax²+bx+c>0 或 ax²+bx+c<0 (a≠0)"}',
'{"为什么这样定义": "描述二次函数值的正负分布", "核心特征": ["最高次数为2", "系数a不为零", "表示二次函数值大于或小于零的情况"]}',
'{"必要性": "解决涉及二次函数值符号分布的问题", "特殊说明": "a≠0是必要条件"}',
NULL,
'{"包含的子知识点": ["K2-1-3-02", "K2-1-3-03"], "常见混淆": "与一元二次方程的区别", "教材位置": "必修1 第2章2.3节 P54-55"}',
'核心',
ARRAY['定义判断', '形式识别']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-3-02',
'三级',
'二次函数的零点',
'概念/定义',
'{"定义": "使二次函数值等于零的自变量取值", "关键要素": ["函数值为零", "自变量取值"], "符号表示": "f(x)=0的解"}',
'{"为什么这样定义": "建立函数与方程的联系", "核心特征": ["几何意义函数图象与x轴的交点横坐标", "代数意义:对应一元二次方程的实数根"]}',
'{"必要性": "分析二次函数图象性质和求解一元二次不等式的基础", "特殊说明": "零点个数由判别式决定"}',
NULL,
'{"包含的子知识点": [], "常见混淆": "零点与极值点的区别", "教材位置": "必修1 第2章2.3节 P55"}',
'重要',
ARRAY['求零点', '零点个数判断', '几何意义']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-3-03',
'三级',
'判别式与二次函数图象位置关系',
'定理/性质',
'{"定义": "判别式Δ=b²-4ac决定二次函数图象与x轴的位置关系", "关键要素": ["判别式", "图象位置", "零点个数"], "符号表示": "Δ>0: 图象与x轴有两个不同交点, Δ=0: 图象与x轴相切于一点, Δ<0: 图象与x轴无交点"}',
'{"为什么这样定义": "通过判别式预测二次方程根的情况,进而确定函数图象特征", "核心特征": ["预测性:无需画图就能知道图象特征", "分类性:三种情况明确对应不同位置关系"]}',
'{"必要性": "求解一元二次不等式的理论基础", "特殊说明": "假设a>0若a<0则图象开口向下"}',
ARRAY['K2-1-3-02'],
'{"包含的子知识点": [], "常见混淆": "不同判别式对应的解集形式", "教材位置": "必修1 第2章2.3节 P55-56"}',
'核心',
ARRAY['判别式计算', '位置关系判断', '解集确定']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-3-04',
'二级',
'二次函数与一元二次方程、不等式的解的对应关系',
'定理/性质',
'{"定义": "二次函数、一元二次方程、一元二次不等式三者之间内在联系的规律", "关键要素": ["函数观点", "统一认识", "对应关系"], "符号表示": "以函数零点为纽带建立对应关系"}',
'{"为什么这样定义": "用函数观点统一方程和不等式,体现数学知识的整体性", "核心特征": ["统一性:三者统一在二次函数框架下", "几何直观:通过函数图象直观理解解集", "方法系统性:形成系统化的求解方法"]}',
'{"必要性": "理解和应用二次函数、方程、不等式关系的基础", "特殊说明": "体现了函数思想在数学中的核心地位"}',
ARRAY['K2-1-3-01', 'K2-1-3-02', 'K2-1-3-03'],
'{"包含的子知识点": [], "常见混淆": "不同情况下的解集形式容易混淆", "教材位置": "必修1 第2章2.3节 P56-57"}',
'核心',
ARRAY['对应关系应用', '解集求解', '函数图象分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-3-05',
'三级',
'一元二次不等式的求解步骤',
'方法/步骤',
'{"定义": "利用二次函数求解一元二次不等式的系统步骤", "关键要素": ["标准化", "函数观点", "步骤化"], "符号表示": "流程化步骤"}',
'{"为什么这样定义": "将求解过程标准化,提高解题效率和准确性", "核心特征": ["系统化:完整的求解流程", "标准化:统一的解题方法", "可操作性:每步都有明确的操作"]}',
'{"必要性": "规范求解过程,避免遗漏和错误", "特殊说明": "要求a>0若a<0需先转化"}',
ARRAY['K2-1-3-04'],
'{"包含的子知识点": [], "常见混淆": "不同Δ值对应的解集形式", "教材位置": "必修1 第2章2.3节 P57"}',
'核心',
ARRAY['步骤应用', '解题规范', '综合求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-1-1-01',
'二级',
'任意角的概念',
'概念/定义',
'{"定义": "角可以看作平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形", "关键要素": ["射线", "旋转", "顶点"], "符号表示": "∠AOB其中O为顶点OA为始边OB为终边"}',
'{"为什么这样定义": "推广角的概念,为研究周期性现象奠定基础", "核心特征": ["动态性:强调旋转过程", "方向性:区分正角和负角", "扩展性角度可以超过360°"]}',
'{"必要性": "研究旋转运动和周期性变化的基础", "特殊说明": "正角:逆时针旋转,负角:顺时针旋转"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": ["K5-1-1-02", "K5-1-1-03"], "常见混淆": "角的大小与角的终边位置的关系", "教材位置": "必修1 第5章5.1节 P168-169"}',
'核心',
ARRAY['角的概念理解', '正负角判断', '终边位置分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-1-1-02',
'三级',
'象限角的概念',
'概念/定义',
'{"定义": "在平面直角坐标系中角的顶点在原点始边与x轴正半轴重合终边落在第几象限就称这个角为第几象限角", "关键要素": ["顶点在原点", "始边在x轴正半轴", "终边所在象限"], "符号表示": "α为第几象限角"}',
'{"为什么这样定义": "建立角与坐标系的联系,便于研究三角函数性质", "核心特征": ["标准化:统一的角的位置标准", "象限性:明确角所在的象限"]}',
'{"必要性": "确定三角函数符号的基础", "特殊说明": "终边在坐标轴上的角不属于任何象限"}',
ARRAY['K5-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "象限角与终边相同的角的区别", "教材位置": "必修1 第5章5.1节 P170"}',
'重要',
ARRAY['象限角判断', '终边位置确定']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-1-1-03',
'三级',
'终边相同的角',
'概念/定义',
'{"定义": "两个角的终边重合,则称这两个角终边相同", "关键要素": ["终边重合", "顶点相同", "始边相同"], "符号表示": "与α终边相同的角:α + k·360° (k∈Z)"}',
'{"为什么这样定义": "研究角的周期性,简化角的表示", "核心特征": ["周期性相差360°的整数倍", "等价性:三角函数值相等"]}',
'{"必要性": "简化角的表示,研究三角函数周期性", "特殊说明": "终边相同的角有无数个"}',
ARRAY['K5-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "终边相同与角的大小相等", "教材位置": "必修1 第5章5.1节 P171"}',
'重要',
ARRAY['终边相同角表示', '集合表示']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-1-2-01',
'二级',
'弧度制的概念',
'概念/定义',
'{"定义": "长度等于半径长的圆弧所对的圆心角叫做1弧度的角用符号rad表示", "关键要素": ["弧长等于半径", "圆心角", "单位rad"], "符号表示": "1 rad, 2π rad = 360°"}',
'{"为什么这样定义": "建立角的弧度制,使角度计算更自然", "核心特征": ["自然性:弧长等于半径时的角度", "无纲性:弧度是无量纲的量"]}',
'{"必要性": "高等数学和物理中的角度表示", "特殊说明": "弧度制使三角函数公式更简洁"}',
ARRAY['K5-1-1-01'],
'{"包含的子知识点": ["K5-1-2-02"], "常见混淆": "弧度与角度的混用", "教材位置": "必修1 第5章5.1节 P172-174"}',
'核心',
ARRAY['弧度概念理解', '弧度与角度互换']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-1-2-02',
'三级',
'弧度与角度的换算',
'公式',
'{"定义": "弧度制与角度制之间的换算关系", "关键要素": ["2π rad = 360°", "换算比例"], "符号表示": "角度化弧度:角度值 × π/180弧度化角度弧度值 × 180/π"}',
'{"为什么这样定义": "建立两种角度制的对应关系", "核心特征": ["线性关系:成正比例关系", "可逆性:可以相互换算"]}',
'{"必要性": "在实际计算中进行角度单位的转换", "特殊说明": "记住几个特殊角的对应关系"}',
ARRAY['K5-1-2-01'],
'{"包含的子知识点": [], "常见混淆": "换算公式的分子分母位置", "教材位置": "必修1 第5章5.1节 P175"}',
'重要',
ARRAY['角度弧度换算', '特殊角记忆']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-2-1-01',
'二级',
'任意角三角函数的定义',
'概念/定义',
'{"定义": "设α是一个任意角它的终边上任意一点P的坐标是(x,y)它与原点的距离是r(r>0)那么sinα = y/r, cosα = x/r, tanα = y/x", "关键要素": ["终边上的点", "坐标与距离", "比值定义"], "符号表示": "sin α = y/r, cos α = x/r, tan α = y/x (x≠0)"}',
'{"为什么这样定义": "将直角三角形中的三角函数推广到任意角", "核心特征": ["比值不变性:与终边上点的选择无关", "几何直观性:具有明确的几何意义"]}',
'{"必要性": "研究任意角的三角函数性质", "特殊说明": "tanα要求x≠0"}',
ARRAY['K5-1-1-01'],
'{"包含的子知识点": ["K5-2-1-02", "K5-2-1-03"], "常见混淆": "定义中的坐标与距离的关系", "教材位置": "必修1 第5章5.2节 P178-180"}',
'核心',
ARRAY['三角函数定义应用', '定义域求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-2-1-02',
'三级',
'三角函数的几何意义',
'概念/定义',
'{"定义": "三角函数在单位圆中的几何表示", "关键要素": ["单位圆", "坐标表示", "长度表示"], "符号表示": "单位圆x² + y² = 1, sin α = 纵坐标y, cos α = 横坐标x, tan α = 过(1,0)的切线纵坐标"}',
'{"为什么这样定义": "用几何图形直观表示三角函数", "核心特征": ["直观性:在单位圆中有明确的几何意义", "一致性:与定义完全一致"]}',
'{"必要性": "理解三角函数的性质和变化规律", "特殊说明": "单位圆半径为1"}',
ARRAY['K5-2-1-01'],
'{"包含的子知识点": [], "常见混淆": "单位圆中各三角函数的几何表示", "教材位置": "必修1 第5章5.2节 P181-183"}',
'重要',
ARRAY['几何意义理解', '单位圆应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-2-2-01',
'三级',
'同角三角函数的基本关系',
'定理/性质',
'{"定义": "同一个角的三角函数之间的关系", "关键要素": ["平方关系", "商数关系"], "符号表示": "sin²α + cos²α = 1平方关系tan α = sin α / cos α(商数关系)"}',
'{"为什么这样定义": "建立同角三角函数间的联系,简化计算", "核心特征": ["恒等性:对所有有意义的角都成立", "实用性:简化三角函数表达式"]}',
'{"必要性": "三角函数式的化简和证明", "特殊说明": "注意定义域的限制"}',
ARRAY['K5-2-1-01'],
'{"包含的子知识点": [], "常见混淆": "公式的应用条件和变形", "教材位置": "必修1 第5章5.2节 P184-186"}',
'核心',
ARRAY['三角恒等式证明', '化简求值']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-3-1-01',
'二级',
'诱导公式一(周期性)',
'公式/定理',
'{"定义": "终边相同的角的三角函数值相等", "关键要素": ["终边相同", "三角函数值相等"], "符号表示": "sin(α + 2kπ) = sin α, cos(α + 2kπ) = cos α, tan(α + 2kπ) = tan α (k∈Z)"}',
'{"为什么这样定义": "体现三角函数的周期性", "核心特征": ["周期性三角函数的周期为2π", "不变性:函数值保持不变"]}',
'{"必要性": "将任意角转化为[0,2π)范围内的角", "特殊说明": "k为任意整数"}',
ARRAY['K5-2-1-01'],
'{"包含的子知识点": [], "常见混淆": "周期性与终边相同的关系", "教材位置": "必修1 第5章5.3节 P188"}',
'核心',
ARRAY['诱导公式应用', '三角函数求值']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-3-2-01',
'二级',
'诱导公式二(π±α)',
'公式/定理',
'{"定义": "角π±α的三角函数与角α的三角函数的关系", "关键要素": ["关于原点对称", "符号变化规律"], "符号表示": "sin(π + α) = -sin α正弦变号cos(π + α) = -cos α余弦变号sin(π - α) = sin α正弦不变cos(π - α) = -cos α(余弦变号)"}',
'{"为什么这样定义": "利用对称关系简化三角函数计算", "核心特征": ["对称性:利用坐标对称关系", "规律性:符号变化有规律可循"]}',
'{"必要性": "将钝角三角函数转化为锐角三角函数", "特殊说明": "符号变化规律:奇变偶不变,符号看象限"}',
ARRAY['K5-3-1-01'],
'{"包含的子知识点": [], "常见混淆": "符号变化的记忆方法", "教材位置": "必修1 第5章5.3节 P189-190"}',
'重要',
ARRAY['诱导公式应用', '符号判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-3-2-02',
'三级',
'诱导公式三(-α',
'公式/定理',
'{"定义": "负角的三角函数与正角三角函数的关系", "关键要素": ["关于x轴对称", "奇偶性"], "符号表示": "sin(-α) = -sin α奇函数cos(-α) = cos α偶函数tan(-α) = -tan α(奇函数)"}',
'{"为什么这样定义": "体现三角函数的奇偶性", "核心特征": ["奇偶性:正弦、正切为奇函数,余弦为偶函数", "对称性利用关于x轴的对称性"]}',
'{"必要性": "处理负角的三角函数计算", "特殊说明": "体现了三角函数的奇偶性质"}',
ARRAY['K5-3-1-01'],
'{"包含的子知识点": [], "常见混淆": "奇函数与偶函数的区别", "教材位置": "必修1 第5章5.3节 P191"}',
'重要',
ARRAY['奇偶性判断', '负角三角函数计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-3-3-01',
'三级',
'诱导公式四(π/2±α',
'公式/定理',
'{"定义": "角π/2±α的三角函数与角α的三角函数的关系", "关键要素": ["函数名互换", "符号变化"], "符号表示": "sin(π/2 + α) = cos α正弦变余弦cos(π/2 + α) = -sin α(余弦变正弦)"}',
'{"为什么这样定义": "实现三角函数的相互转换", "核心特征": ["函数互换:正弦与余弦互换", "符号确定:根据象限确定符号"]}',
'{"必要性": "三角函数的相互转换和简化", "特殊说明": "配合''奇变偶不变,符号看象限''记忆"}',
ARRAY['K5-3-1-01'],
'{"包含的子知识点": [], "常见混淆": "函数名互换的规律", "教材位置": "必修1 第5章5.3节 P192-193"}',
'重要',
ARRAY['诱导公式综合应用', '函数转换']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-4-1-01',
'二级',
'正弦函数的图像',
'概念/图像',
'{"定义": "函数y = sin x(x∈R)的图像叫做正弦曲线", "关键要素": ["周期性", "波形特征", "关键点"], "符号表示": "y = sin x"}',
'{"为什么这样定义": "直观展示正弦函数的变化规律", "核心特征": ["波形性:连续的波形曲线", "周期性每2π重复一次", "对称性:关于原点对称"]}',
'{"必要性": "理解正弦函数的性质和应用", "特殊说明": "通过''五点法''可以快速作图"}',
ARRAY['K5-2-1-01', 'K3-1-2-03'],
'{"包含的子知识点": [], "常见混淆": "正弦函数与余弦函数图像的区别", "教材位置": "必修1 第5章5.4节 P195-197"}',
'核心',
ARRAY['图像绘制', '图像性质分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-4-1-02',
'三级',
'余弦函数的图像',
'概念/图像',
'{"定义": "函数y = cos x(x∈R)的图像叫做余弦曲线", "关键要素": ["周期性", "波形特征", "关键点"], "符号表示": "y = cos x"}',
'{"为什么这样定义": "直观展示余弦函数的变化规律", "核心特征": ["波形性:连续的波形曲线", "周期性每2π重复一次", "对称性关于y轴对称"]}',
'{"必要性": "理解余弦函数的性质和应用", "特殊说明": "余弦函数图像是正弦函数图像向左平移π/2个单位"}',
ARRAY['K5-4-1-01'],
'{"包含的子知识点": [], "常见混淆": "余弦函数与正弦函数图像的关系", "教材位置": "必修1 第5章5.4节 P198-199"}',
'重要',
ARRAY['图像绘制', '函数关系分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-4-2-01',
'三级',
'正弦函数的性质',
'定理/性质',
'{"定义": "正弦函数y = sin x的基本性质", "关键要素": ["定义域", "值域", "周期性", "奇偶性", "单调性"], "符号表示": "定义域R值域[-1, 1]周期奇偶性奇函数"}',
'{"为什么这样定义": "系统总结正弦函数的特征", "核心特征": ["有界性:值域限制在[-1,1]", "周期性最小正周期为2π", "对称性:奇函数,关于原点对称"]}',
'{"必要性": "分析正弦函数变化规律的基础", "特殊说明": "在[2kπ-π/2, 2kπ+π/2]上单调递增"}',
ARRAY['K5-4-1-01'],
'{"包含的子知识点": [], "常见混淆": "单调区间与周期的关系", "教材位置": "必修1 第5章5.4节 P200-202"}',
'核心',
ARRAY['性质应用', '最值求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-4-2-02',
'三级',
'余弦函数的性质',
'定理/性质',
'{"定义": "余弦函数y = cos x的基本性质", "关键要素": ["定义域", "值域", "周期性", "奇偶性", "单调性"], "符号表示": "定义域R值域[-1, 1]周期奇偶性偶函数"}',
'{"为什么这样定义": "系统总结余弦函数的特征", "核心特征": ["有界性:值域限制在[-1,1]", "周期性最小正周期为2π", "对称性偶函数关于y轴对称"]}',
'{"必要性": "分析余弦函数变化规律的基础", "特殊说明": "在[2kπ, 2kπ+π]上单调递减"}',
ARRAY['K5-4-1-02'],
'{"包含的子知识点": [], "常见混淆": "余弦函数与正弦函数性质的异同", "教材位置": "必修1 第5章5.4节 P203-204"}',
'重要',
ARRAY['性质应用', '函数比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-4-3-01',
'二级',
'正切函数的图像与性质',
'概念/图像',
'{"定义": "函数y = tan x(x≠π/2+kπ)的图像和性质", "关键要素": ["定义域", "值域", "周期性", "渐近线"], "符号表示": "定义域:{x|x≠π/2+kπ, k∈Z}值域R周期π"}',
'{"为什么这样定义": "了解正切函数的完整特征", "核心特征": ["无界性:值域为全体实数", "周期性:最小正周期为π", "渐近性:有垂直渐近线"]}',
'{"必要性": "研究斜率变化和周期现象", "特殊说明": "在每个周期内都是单调递增的"}',
ARRAY['K5-2-1-01'],
'{"包含的子知识点": [], "常见混淆": "正切函数与正弦、余弦函数的差异", "教材位置": "必修1 第5章5.4节 P205-207"}',
'重要',
ARRAY['图像绘制', '性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-5-1-01',
'二级',
'两角和与差的余弦公式',
'公式/定理',
'{"定义": "两个角的和与差的余弦函数公式", "关键要素": ["两角和差", "余弦转换"], "符号表示": "cos(α+β) = cos α cos β - sin α sin βcos(α-β) = cos α cos β + sin α sin β"}',
'{"为什么这样定义": "将两角的和差转化为单角的三角函数", "核心特征": ["可逆性:可从左边推出右边,也可从右边推出左边", "对称性:和差公式符号相反"]}',
'{"必要性": "三角函数恒等变换的基础", "特殊说明": "注意符号规律"}',
ARRAY['K5-2-1-01'],
'{"包含的子知识点": ["K5-5-1-02"], "常见混淆": "和差公式的符号记忆", "教材位置": "必修1 第5章5.5节 P210-212"}',
'核心',
ARRAY['公式应用', '三角恒等变换']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-5-1-02',
'二级',
'两角和与差的正弦公式',
'公式/定理',
'{"定义": "两个角的和与差的正弦函数公式", "关键要素": ["两角和差", "正弦转换"], "符号表示": "sin(α+β) = sin α cos β + cos α sin βsin(α-β) = sin α cos β - cos α sin β"}',
'{"为什么这样定义": "将两角的和差转化为单角的三角函数", "核心特征": ["可逆性:可双向推导", "一致性:符号与和差一致"]}',
'{"必要性": "三角函数恒等变换的重要公式", "特殊说明": "结合余弦公式可以推导其他公式"}',
ARRAY['K5-5-1-01'],
'{"包含的子知识点": [], "常见混淆": "与余弦公式的区别", "教材位置": "必修1 第5章5.5节 P213-214"}',
'核心',
ARRAY['公式记忆', '化简求值']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-5-2-01',
'三级',
'两角和与差的正切公式',
'公式/定理',
'{"定义": "两个角的和与差的正切函数公式", "关键要素": ["两角和差", "正切转换", "分式形式"], "符号表示": "tan(α+β) = (tan α + tan β)/(1 - tan α tan β)tan(α-β) = (tan α - tan β)/(1 + tan α tan β)"}',
'{"为什么这样定义": "由正弦和余弦公式推导而来", "核心特征": ["分式性:用分式表示", "条件性:要求分母不为零"]}',
'{"必要性": "正切函数的恒等变换", "特殊说明": "注意公式的定义域限制"}',
ARRAY['K5-5-1-01', 'K5-5-1-02', 'K5-2-2-01'],
'{"包含的子知识点": [], "常见混淆": "分母符号的变化", "教材位置": "必修1 第5章5.5节 P215"}',
'重要',
ARRAY['公式应用', '条件判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-5-3-01',
'二级',
'二倍角公式',
'公式/定理',
'{"定义": "二倍角的三角函数公式", "关键要素": ["二倍角关系", "多种表达形式"], "符号表示": "sin 2α = 2 sin α cos αcos 2α = cos²α - sin²α = 2cos²α - 1 = 1 - 2sin²αtan 2α = 2tan α/(1 - tan²α)"}',
'{"为什么这样定义": "将二倍角转化为单角三角函数", "核心特征": ["多样性:余弦二倍角有三种形式", "应用性:在积分和微分中广泛应用"]}',
'{"必要性": "简化二倍角的三角函数表达式", "特殊说明": "根据需要选择合适的余弦二倍角形式"}',
ARRAY['K5-5-1-01', 'K5-5-1-02', 'K5-5-2-01'],
'{"包含的子知识点": ["K5-5-3-02"], "常见混淆": "余弦二倍角的三种形式选择", "教材位置": "必修1 第5章5.5节 P216-217"}',
'核心',
ARRAY['公式选择', '恒等变换']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-5-3-02',
'三级',
'半角公式',
'公式/定理',
'{"定义": "半角的三角函数公式", "关键要素": ["半角关系", "平方根形式"], "符号表示": "sin(α/2) = ±√((1 - cos α)/2)cos(α/2) = ±√((1 + cos α)/2)tan(α/2) = ±√((1 - cos α)/(1 + cos α))"}',
'{"为什么这样定义": "将半角转化为整角的三角函数", "核心特征": ["开方性:涉及平方根运算", "符号性:需要根据象限确定符号"]}',
'{"必要性": "处理半角的三角函数计算", "特殊说明": "符号由半角所在的象限决定"}',
ARRAY['K5-5-3-01'],
'{"包含的子知识点": [], "常见混淆": "符号的确定方法", "教材位置": "必修1 第5章5.5节 P218"}',
'重要',
ARRAY['半角计算', '符号判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-6-1-01',
'二级',
'函数y=Asin(ωx+φ)的参数意义',
'概念/定义',
'{"定义": "函数y = Asin(ωx + φ)中各个参数的几何和物理意义", "关键要素": ["振幅A", "角频率ω", "初相位φ"], "符号表示": "A振幅决定最大值和最小值ω角频率决定周期 T = 2π/|ω|;φ:初相位,决定图像的左右平移"}',
'{"为什么这样定义": "描述简谐运动的完整特征", "核心特征": ["振幅性A控制振动的幅度", "周期性:ω控制振动的快慢", "相位性:φ控制振动的起始位置"]}',
'{"必要性": "分析和描述各种周期性现象", "特殊说明": "A>0ω≠0"}',
ARRAY['K5-4-2-01'],
'{"包含的子知识点": ["K5-6-1-02"], "常见混淆": "各个参数的作用机制", "教材位置": "必修1 第5章5.6节 P222-224"}',
'核心',
ARRAY['参数分析', '物理意义理解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-6-1-02',
'三级',
'函数y=Asin(ωx+φ)的图像变换',
'方法/变换',
'{"定义": "从y = sin x到y = Asin(ωx + φ)的图像变换过程", "关键要素": ["振幅变换", "周期变换", "相位变换"], "符号表示": "y = sin x → y = Asin(ωx + φ)"}',
'{"为什么这样定义": "理解复合变换对图像的影响", "核心特征": ["顺序性:变换顺序影响最终结果", "组合性:多种变换的组合效果"]}',
'{"必要性": "绘制复杂三角函数图像的方法", "特殊说明": "一般先相位变换,再周期变换,最后振幅变换"}',
ARRAY['K5-6-1-01', 'K3-1-2-03'],
'{"包含的子知识点": [], "常见混淆": "变换顺序对结果的影响", "教材位置": "必修1 第5章5.6节 P225-227"}',
'重要',
ARRAY['图像变换', '参数求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-7-1-01',
'二级',
'三角函数模型的建立',
'方法/建模',
'{"定义": "根据实际问题建立三角函数数学模型的方法", "关键要素": ["问题分析", "模型选择", "参数确定", "模型验证"], "符号表示": "实际问题 → 三角函数模型 → 参数求解 → 模型应用"}',
'{"为什么这样定义": "用数学方法描述和解决周期性现象", "核心特征": ["周期性:适用于具有周期特征的现象", "预测性:可以预测未来的变化趋势"]}',
'{"必要性": "处理具有周期性变化规律的实际问题", "特殊说明": "需要结合具体问题特点选择合适模型"}',
ARRAY['K5-6-1-01'],
'{"包含的子知识点": [], "常见混淆": "模型选择的标准和参数确定方法", "教材位置": "必修1 第5章5.7节 P230-232"}',
'重要',
ARRAY['建模问题', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K5-7-1-02',
'三级',
'三角函数在物理中的应用',
'应用/实例',
'{"定义": "三角函数在物理学中的典型应用", "关键要素": ["简谐振动", "交流电", "波动现象"], "符号表示": "物理量随时间的变化规律"}',
'{"为什么这样定义": "三角函数是描述周期性物理现象的理想工具", "核心特征": ["普适性:适用于多种物理现象", "精确性:能够精确描述物理过程"]}',
'{"必要性": "研究物理学中的周期性现象", "特殊说明": "需要理解物理背景和数学形式的对应关系"}',
ARRAY['K5-6-1-01'],
'{"包含的子知识点": [], "常见混淆": "物理量与数学参数的对应关系", "教材位置": "必修1 第5章5.7节 P233-235"}',
'重要',
ARRAY['物理建模', '跨学科应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-01',
'二级',
'总体、个体、样本',
'概念/定义',
'{"定义": "总体是指调查对象的全体,个体是组成总体的每一个调查对象,样本是从总体中抽取的那部分个体", "关键要素": ["调查对象全体", "单个调查对象", "抽取的部分"], "符号表示": "总体population样本sample"}',
'{"为什么这样定义": "明确统计调查的基本对象和范围", "核心特征": ["整体性", "代表性", "部分性"]}',
'{"必要性": "统计调查的基础概念", "特殊说明": "个体可以是调查对象的某些指标的集合"}',
ARRAY['调查概念', '数据概念'],
'{"包含的子知识点": ["K9-1-02 全面调查", "K9-1-03 抽样调查"], "常见混淆": "总体与样本的区别", "教材位置": "必修2 第9章9.1.1节 P180"}',
'核心',
ARRAY['概念理解', '识别判断', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-02',
'二级',
'全面调查',
'概念/定义',
'{"定义": "对每一个调查对象都进行调查的方法,又称普查", "关键要素": ["所有个体", "逐一调查", "全面性"], "符号表示": "无"}',
'{"为什么这样定义": "获取全面完整的数据信息", "核心特征": ["完整性", "准确性", "高成本"]}',
'{"必要性": "需要精确完整数据时", "特殊说明": "适用于规模不大或重要性很高的调查"}',
ARRAY['K9-1-01 总体概念'],
'{"相关概念": ["抽样调查"], "常见混淆": "全面调查与抽样调查的选择", "教材位置": "必修2 第9章9.1.1节 P180"}',
'重要',
ARRAY['方法选择', '优缺点分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-03',
'二级',
'抽样调查',
'概念/定义',
'{"定义": "根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法", "关键要素": ["抽取部分", "估计总体", "节省成本"], "符号表示": "sampling survey"}',
'{"为什么这样定义": "在成本和精度之间寻求平衡", "核心特征": ["经济性", "代表性", "或然性"]}',
'{"必要性": "大多数统计调查的主要方法", "特殊说明": "适合具有毁损性的调查"}',
ARRAY['K9-1-01 总体概念', '概率基础'],
'{"相关概念": ["简单随机抽样", "分层随机抽样"], "常见混淆": "与全面调查的区别", "教材位置": "必修2 第9章9.1.1节 P180"}',
'核心',
ARRAY['方法选择', '设计抽样方案']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-04',
'三级',
'样本容量',
'概念/定义',
'{"定义": "样本中包含的个体数,简称样本量", "关键要素": ["样本大小", "个体数量", "n"], "符号表示": "n"}',
'{"为什么这样定义": "样本规模大小的度量", "核心特征": ["整数", "正整数", "1≤n<N"]}',
'{"必要性": "抽样调查的重要参数", "特殊说明": "影响估计精度"}',
ARRAY['K9-1-03 抽样调查'],
'{"相关概念": ["总体规模N"], "常见混淆": "样本量与总体规模的关系", "教材位置": "必修2 第9章9.1.1节 P180"}',
'核心',
ARRAY['参数确定', '成本效益分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-05',
'三级',
'简单随机抽样',
'概念/定义',
'{"定义": "从总体中抽取n个个体使得每个个体被抽中的概率相等。分为放回简单随机抽样和不放回简单随机抽样", "关键要素": ["概率相等", "随机性", "无偏向"], "符号表示": "simple random sampling"}',
'{"为什么这样定义": "保证样本的代表性", "核心特征": ["等概率性", "公平性", "无偏性"]}',
'{"必要性": "基本抽样方法", "特殊说明": "本章指不放回简单随机抽样"}',
ARRAY['K9-1-03 抽样调查', '概率基础'],
'{"相关概念": ["放回抽样", "不放回抽样"], "常见混淆": "两种简单随机抽样的区别", "教材位置": "必修2 第9章9.1.1节 P181"}',
'核心',
ARRAY['方法实施', '样本抽取']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-06',
'三级',
'抽签法',
'概念/定义',
'{"定义": "将总体所有个体编号制作号签,放入不透明容器中充分搅拌,然后不放回地逐个抽取号签的抽样方法", "关键要素": ["编号", "号签", "随机抽取", "不放回"], "符号表示": "无"}',
'{"为什么这样成立": "简单直观的随机方法", "核心特征": ["操作性", "直观性", "等概率"]}',
'{"必要性": "适合总体规模较小的情况", "特殊说明": "准备工作比较麻烦"}',
ARRAY['K9-1-05 简单随机抽样'],
'{"相关概念": ["随机数法"], "常见混淆": "与随机数法的优缺点", "教材位置": "必修2 第9章9.1.1节 P182"}',
'重要',
ARRAY['实际操作', '方法比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-07',
'三级',
'随机数法',
'概念/定义',
'{"定义": "用随机数工具产生随机数作为抽样编号的抽样方法", "关键要素": ["随机数生成", "编号匹配", "重复处理"], "符号表示": "RAND(), RANDBETWEEN()"}',
'{"为什么这样成立": "利用技术手段提高效率", "核心特征": ["便捷性", "精确性", "可重复"]}',
'{"必要性": "大规模抽样的主要方法", "特殊说明": "可以使用计算器或软件"}',
ARRAY['K9-1-05 简单随机抽样', '随机数概念'],
'{"相关概念": ["抽签法"], "常见混淆": "不同随机数工具的区别", "教材位置": "必修2 第9章9.1.1节 P182"}',
'重要',
ARRAY['技术操作', '软件应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-08',
'三级',
'样本的观测数据',
'概念/定义',
'{"定义": "调查样本获得的变量值", "关键要素": ["观测结果", "数据质量", "原始信息"], "符号表示": "样本数据"}',
'{"为什么这样定义": "统计分析的基础材料", "核心特征": ["原始性", "随机性", "代表性"]}',
'{"必要性": "统计分析的依据", "特殊说明": "需要质量控制和清洗"}',
ARRAY['K9-1-03 抽样调查'],
'{"相关概念": ["样本平均数", "样本方差"], "常见混淆": "观测数据与理论值的区别", "教材位置": "必修2 第9章9.1.1节 P183"}',
'核心',
ARRAY['数据处理', '分析计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-09',
'二级',
'总体均值',
'概念/定义',
'{"定义": "总体中所有个体的变量值的平均数公式Ȳ = (Y₁+Y₂+...+Y_N)/N", "关键要素": ["所有个体", "变量值", "算术平均"], "符号表示": "Ȳ, μ"}',
'{"为什么这样定义": "总体的重要特征参数", "核心特征": ["整体性", "确定性", "代表性"]}',
'{"必要性": "总体集中趋势的度量", "特殊说明": "可以是加权形式"}',
ARRAY['平均数概念', '求和符号Σ'],
'{"相关概念": ["样本均值", "估计"], "常见混淆": "总体均值与样本均值的区别", "教材位置": "必修2 第9章9.1.1节 P185"}',
'核心',
ARRAY['参数计算', '特征分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-10',
'二级',
'样本均值',
'概念/定义',
'{"定义": "样本中所有个体的变量值的平均数,公式:ȳ = (y₁+y₂+...+yₙ)/n", "关键要素": ["样本个体", "变量值", "算术平均"], "符号表示": "ȳ"}',
'{"为什么这样定义": "样本集中趋势的描述", "核心特征": ["随机性", "代表性", "估计性"]}',
'{"必要性": "估计总体均值的依据", "特殊说明": "具有随机性"}',
ARRAY['K9-1-08 样本的观测数据'],
'{"相关概念": ["总体均值", "无偏估计"], "常见混淆": "样本均值与总体均值的关系", "教材位置": "必修2 第9章9.1.1节 P185"}',
'核心',
ARRAY['计算', '估计', '比较分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-11',
'二级',
'分层随机抽样',
'概念/定义',
'{"定义": "按一个或多个变量把总体划分成若干个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本", "关键要素": ["分层", "独立抽样", "合并样本"], "符号表示": "stratified random sampling"}',
'{"为什么这样成立": "利用辅助信息提高样本代表性", "核心特征": ["分层性", "独立性", "比例分配"]}',
'{"必要性": "当总体内部差异较大时使用", "特殊说明": "层内差异小,层间差异大"}',
ARRAY['K9-1-05 简单随机抽样', '分类变量'],
'{"相关概念": ["比例分配", "层"], "常见混淆": "与简单随机抽样的区别", "教材位置": "必修2 第9章9.1.2节 P188"}',
'核心',
ARRAY['方法设计', '样本抽取']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-12',
'三级',
'比例分配',
'概念/定义',
'{"定义": "在分层随机抽样中,每层样本量都与层的大小成比例的样本量分配方式", "关键要素": ["比例关系", "层规模", "样本量分配"], "符号表示": "nᵢ = m/(M+m+...+N) × n"}',
'{"为什么这样成立": "保证样本结构与总体结构一致", "核心特征": ["结构相似性", "比例性", "合理性"]}',
'{"必要性": "分层抽样中的重要分配原则", "特殊说明": "提高估计效率"}',
ARRAY['K9-1-11 分层随机抽样'],
'{"相关概念": ["权重", "层"], "常见混淆": "其他分配方式", "教材位置": "必修2 第9章9.1.2节 P188"}',
'重要',
ARRAY['样本量计算', '效果比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-13',
'三级',
'百分位数',
'概念/定义',
'{"定义": "一组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值的值", "关键要素": ["百分比例", "位置值", "排序后"], "符号表示": "第p百分位数"}',
'{"为什么这样定义": "描述数据的相对位置", "核心特征": ["相对性", "顺序性", "分位数"]}',
'{"必要性": "分析数据分布的重要指标", "特殊说明": "常用有25%、50%、75%分位数"}',
ARRAY['排序概念', '百分比'],
'{"相关概念": ["中位数", "四分位数"], "常见混淆": "百分位数与频率的关系", "教材位置": "必修2 第9章9.2.2节 P210"}',
'核心',
ARRAY['计算', '应用分析', '阈值确定']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-14',
'三级',
'中位数',
'概念/定义',
'{"定义": "将一组数据按从小到大排序后,位于中间位置的数(偶数个时取中间两个的平均)", "关键要素": ["排序", "中间位置", "中心值"], "符号表示": "Me"}',
'{"为什么这样成立": "抗极端值的中心位置度量", "核心特征": ["位置性", "稳健性", "抗干扰性"]}',
'{"必要性": "数据的中心趋势度量", "特殊说明": "适用于有异常值的数据"}',
ARRAY['排序概念', '数据中心位置'],
'{"相关概念": ["平均数", "众数", "百分位数"], "常见混淆": "平均数与中位数的关系", "教材位置": "初中知识回顾"}',
'核心',
ARRAY['计算', '比较分析', '稳健性分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-1-15',
'三级',
'众数',
'概念/定义',
'{"定义": "一组数据中出现次数最多的值", "关键要素": ["频数最多", "最常见值"], "符号表示": "Mo"}',
'{"为什么这样定义": "描述最常见的情况", "核心特征": ["频率最高", "代表性", "简单性"]}',
'{"必要性": "分类数据的代表", "特殊说明": "不唯一时可以没有众数"}',
ARRAY['频数统计'],
'{"相关概念": ["平均数", "中位数"], "常见混淆": "三种集中趋势的比较", "教材位置": "初中知识回顾"}',
'重要',
ARRAY['频数统计', '分类数据分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-01',
'三级',
'极差',
'概念/定义',
'{"定义": "一组数据中最大值与最小值的差", "关键要素": ["最大值", "最小值", "差值"], "符号表示": "Range = max(xi) - min(xi)"}',
'{"为什么这样定义": "描述数据分布范围", "核心特征": ["范围性", "直观性", "简易性"]}',
'{"必要性": "数据离散程度的简单度量", "特殊说明": "易受极端值影响"}',
ARRAY['最大值', '最小值'],
'{"相关概念": ["方差", "标准差"], "常见混淆": "与其他离散度量的区别", "教材位置": "必修2 第9章9.2.4节 P218"}',
'基础',
ARRAY['计算', '比较分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-02',
'二级',
'方差',
'公式',
'{"公式": "总体方差S² = (1/N)∑(Yᵢ - Ȳ)²样本方差s² = (1/n)∑(yᵢ - ȳ)²", "参数说明": {"Yᵢ": "第i个个体的变量值", "Ȳ": "总体平均数", "yᵢ": "第i个样本的变量值", "ȳ": "样本平均数"}}',
'{"推导过程": "通过数据与均值的偏离平方的平均来度量离散程度", "关键步骤": ["计算偏差", "平方求和", "平均化"]}',
'{"前提": "数据定量分析", "适用范围": "所有数值型数据"}',
ARRAY['平均数', '平方和', '离差'],
'{"相关概念": ["标准差", "极差"], "常见混淆": "总体方差与样本方差的区别", "教材位置": "必修2 第9章9.2.4节 P219"}',
'核心',
ARRAY['计算', '分析', '比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-03',
'二级',
'标准差',
'公式',
'{"公式": "总体标准差S = √<>样本标准差s = √<>s²", "参数说明": {"S²": "总体方差", "s²": "样本方差"}}',
'{"推导过程": "方差的算术平方根", "关键步骤": ["开平方运算", "单位统一"]}',
'{"前提": "已计算方差", "适用范围": "与原始数据单位一致"}',
ARRAY['K9-2-02 方差', '开平方'],
'{"相关概念": ["方差", "平均绝对偏差"], "常见混淆": "标准差与方差的关系", "教材位置": "必修2 第9章9.2.4节 P219"}',
'核心',
ARRAY['计算', '比较', '估计']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-04',
'二级',
'频率分布表',
'概念/定义',
'{"定义": "将数据分组统计各组频数和频率的表格", "关键要素": ["分组", "频数", "频率", "累计频率"], "符号表示": "frequency table"}',
'{"为什么这样定义": "整理和展示数据分布", "核心特征": ["结构性", "直观性", "分析性"]}',
'{"必要性": "数据分析的基本方法", "特殊说明": "适合组数不多的情况"}',
ARRAY['数据分组', '频数统计', '频率概念'],
'{"相关概念": ["频率分布直方图", "累积频率"], "常见混淆": "频率表与频数表", "教材位置": "必修2 第9章9.2.1节 P200"}',
'重要',
ARRAY['制作', '解读', '分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-05',
'二级',
'频率分布直方图',
'概念/定义',
'{"定义": "以组距为底,以频率/组距为高的直方图,面积表示频率", "关键要素": ["组距", "频率密度", "矩形面积"], "符号表示": "frequency distribution histogram"}',
'{"为什么这样定义": "将频率分布可视化", "核心特征": ["直观性", "形象性", "面积=频率"]}',
'{"必要性": "数据分布的直观展示", "特殊说明": "组距选择影响图形形状"}',
ARRAY['频率分布表', '直方图概念'],
'{"相关概念": ["条形图", "折线图"], "常见混淆": "与频数分布直方图的区别", "教材位置": "必修2 第9章9.2.1节 P203"}',
'核心',
ARRAY['绘制', '解读', '分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-06',
'二级',
'极差',
'公式',
'{"公式": "Range = max(X₁,X₂,...,Xₙ) - min(X₁,X₂,...,Xₙ)", "参数说明": {"max(X₁,X₂,...,Xₙ)": "数据中的最大值", "min(X₁,X₂,...,Xₙ)": "数据中的最小值"}}',
'{"推导过程": "直接计算最大值与最小值的差", "关键步骤": ["求最大值", "求最小值", "计算差值"]}',
'{"前提": "数值型数据", "适用范围": "任何数值型数据集"}',
ARRAY['最大值', '最小值', '差值运算'],
'{"相关概念": ["方差", "标准差", "四分位距"], "常见混淆": "与其他离散度量的关系", "教材位置": "必修2 第9章9.2.4节 P218"}',
'基础',
ARRAY['计算', '比较', '稳健性分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-07',
'三级',
'条形图',
'概念/定义',
'{"定义": "用等宽的直条表示各类别数据频数的统计图", "关键要素": ["类别", "频数", "等宽直条"], "符号表示": "bar chart"}',
'{"为什么这样定义": "分类数据的直观比较", "核心特征": ["直观性", "比较性", "等距性"]}',
'{"必要性": "分类数据展示", "特殊说明": "适合类别较少的情况"}',
ARRAY['分类数据', '频数统计'],
'{"相关概念": ["扇形图", "折线图"], "常见混淆": "与直方图的区别", "教材位置": "初中知识回顾"}',
'重要',
ARRAY['制作', '解读', '比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-08',
'三级',
'扇形图',
'概念/定义',
'{"定义": "用圆形表示各类别数据占总数的比例的统计图", "关键要素": ["扇形", "百分比", "圆形"], "符号表示": "pie chart"}',
'{"为什么这样定义": "比例关系的可视化", "核心特征": ["比例性", "整体性", "直观性"]}',
'{"必要性": "比例构成分析", "特殊说明": "适合类别不多的情况"}',
ARRAY['比例概念', '圆的面积'],
'{"相关概念": ["条形图", "柱状图"], "常见混淆": "不同统计图的适用场景", "教材位置": "初中知识回顾"}',
'重要',
ARRAY['制作', '解读', '比例分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-2-09',
'三级',
'折线图',
'概念/定义',
'{"定义": "用点连接的方式表示数据随时间或其他变量变化的统计图", "关键要素": ["时间序列", "点连线", "趋势"], "符号表示": "line chart"}',
'{"为什么这样定义": "数据变化趋势的可视化", "核心特征": ["时间性", "连续性", "趋势性"]}',
'{"必要性": "时序数据分析", "特殊说明": "适合展示变化趋势"}',
ARRAY['时间序列', '坐标', '连线'],
'{"相关概念": ["柱状图", "条形图"], "常见混淆": "其他统计图的适用场景", "教材位置": "初中知识回顾"}',
'重要',
ARRAY['制作', '趋势分析', '预测']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-3-01',
'二级',
'BMI',
'公式',
'{"公式": "BMI = 体重(kg)/身高²(m²)", "参数说明": {"体重": "身体质量单位kg", "身高": "身高单位m"}}',
'{"推导过程": "基于国际标准", "关键步骤": ["测量体重身高", "计算平方", "得到比值"]}',
'{"前提": "测量了身高和体重", "适用范围": "肥胖程度评估"}',
ARRAY['国际标准', '测量方法'],
'{"相关概念": ["肥胖标准", "健康评估"], "常见混淆": "BMI与体重身高的单独关系", "教材位置": "必修2 第9章9.3.1节 P1347"}',
'应用',
ARRAY['计算', '健康评估', '分类']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-3-02',
'三级',
'数据清洗',
'概念/定义',
'{"定义": "对网络数据质量进行去伪存真的处理过程", "关键要素": ["质量评估", "去伪", "存真"], "符号表示": "data cleaning"}',
'{"为什么这样成立": "确保数据分析的可靠性", "核心特征": ["真实性", "可靠性", "准确性"]}',
'{"必要性": "数据质量的基本要求", "特殊说明": "网络数据必须清洗"}',
ARRAY['数据质量', '统计分析基础'],
'{"相关概念": ["二手数据", "数据质量"], "常见混淆": "原始数据与清洗后的区别", "教材位置": "必修2 第9章9.1.3节 P414"}',
'重要',
ARRAY['数据处理', '质量评估']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K9-3-03',
'三级',
'二手数据',
'概念/定义',
'{"定义": "他人收集并公开发布的现存数据", "关键要素": ["他人收集", "公开", "现有"], "符号表示": "secondary data"}',
'{"为什么这样成立": "减少数据收集成本", "核心特征": ["间接性", "经济性", "经验性"]}',
'{"必要性": "数据获取的重要途径", "特殊说明": "需要注意数据质量"}',
ARRAY['数据来源', '数据整理'],
'{"相关概念": ["一手数据", "数据质量"], "常见混淆": "二手数据与一手数据的关系", "教材位置": "必修2 第9章9.1.3节 P394"}',
'重要',
ARRAY['数据查找', '综合利用', '文献研究']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-01',
'二级',
'函数概念的定义',
'概念/定义',
'{"定义": "设A、B是两个非空的数集如果按照某种确定的对应关系f使对于集合A中的任意一个数x在集合B中都有唯一确定的数y和它对应那么就称fA→B为从集合A到集合B的一个函数", "关键要素": ["两个非空数集", "确定的对应关系", "任意x对应唯一y"], "符号表示": "fA→By = f(x)"}',
'{"为什么这样定义": "建立两个变量之间的依赖关系,是现代数学的核心概念", "核心特征": ["非空性:定义域和值域都是非空数集", "单值性一个x只能对应一个y", "确定性:对应关系是确定的"]}',
'{"必要性": "描述变量间依赖关系的基础", "特殊说明": "A称为定义域B称为值域的所在集合"}',
ARRAY['K1-1-1-01', 'K1-1-2-01'],
'{"包含的子知识点": ["K3-1-1-02", "K3-1-1-03", "K3-1-1-04"], "常见混淆": "函数与一般对应关系的区别", "教材位置": "必修1 第3章3.1节 P59-61"}',
'核心',
ARRAY['概念理解', '函数判断', '定义域求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-02',
'三级',
'函数的定义域',
'概念/定义',
'{"定义": "函数y=f(x)中自变量x的取值集合", "关键要素": ["自变量", "取值集合"], "符号表示": "D = {x | x∈A}"}',
'{"为什么这样定义": "明确函数的自变量取值范围,保证函数有意义", "核心特征": ["非空性:定义域不能为空集", "确定性:定义域是明确的集合"]}',
'{"必要性": "确定函数有意义的前提条件", "特殊说明": "实际问题要考虑实际意义"}',
ARRAY['K3-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "定义域与值域的区别", "教材位置": "必修1 第3章3.1节 P61"}',
'核心',
ARRAY['求函数定义域', '实际问题定义域']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-03',
'三级',
'函数的值域',
'概念/定义',
'{"定义": "与定义域内的所有x值对应的函数值y的集合", "关键要素": ["函数值", "对应值的集合"], "符号表示": "R = {y | y=f(x), x∈D}"}',
'{"为什么这样定义": "描述函数值的取值范围,反映函数的变化范围", "核心特征": ["依赖性:值域依赖于定义域", "集合性:是所有可能函数值的集合"]}',
'{"必要性": "了解函数的变化范围和取值特征", "特殊说明": "值域是值域所在集合的子集"}',
ARRAY['K3-1-1-01', 'K3-1-1-02'],
'{"包含的子知识点": [], "常见混淆": "值域与值域所在集合的区别", "教材位置": "必修1 第3章3.1节 P61"}',
'重要',
ARRAY['求函数值域', '值域范围判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-04',
'三级',
'函数的对应关系',
'概念/定义',
'{"定义": "函数中连接自变量和因变量的关系法则", "关键要素": ["对应法则", "关系表达"], "符号表示": "f"}',
'{"为什么这样定义": "具体表达两个变量间的依赖关系", "核心特征": ["确定性:对应关系是确定的", "单值性一个x只能对应一个y"]}',
'{"必要性": "表达函数关系的核心要素", "特殊说明": "对应关系可以用多种方式表示"}',
ARRAY['K3-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "对应关系与函数值的区别", "教材位置": "必修1 第3章3.1节 P60"}',
'核心',
ARRAY['对应关系理解', '函数法则应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-05',
'三级',
'函数相等的概念',
'概念/定义',
'{"定义": "如果两个函数的定义域相同,并且定义域内的任意一个自变量对应的函数值都相等,那么这两个函数相等", "关键要素": ["定义域相同", "对应函数值相等"], "符号表示": "f=g 当且仅当 Df=Dg 且 ∀x∈Df, f(x)=g(x)"}',
'{"为什么这样定义": "建立函数相等的判断标准", "核心特征": ["定义域一致:必须具有相同的定义域", "函数值一致:定义域内每点函数值相同"]}',
'{"必要性": "判断两个函数是否为同一函数", "特殊说明": "表达式不同但函数可能相等"}',
ARRAY['K3-1-1-01', 'K3-1-1-02'],
'{"包含的子知识点": [], "常见混淆": "函数相等与表达式相等的区别", "教材位置": "必修1 第3章3.1节 P62"}',
'重要',
ARRAY['函数相等判断', '函数等价性分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-2-01',
'三级',
'函数的解析法表示',
'方法/表示',
'{"定义": "用数学表达式表示函数的对应关系", "关键要素": ["数学表达式", "对应关系"], "符号表示": "y = f(x) = 表达式"}',
'{"为什么这样定义": "用简洁的数学公式表达函数关系", "核心特征": ["精确性:准确表达函数关系", "简洁性:形式简洁明了"]}',
'{"必要性": "函数关系可以用数学表达式表示时", "特殊说明": "要注明定义域"}',
ARRAY['K3-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "解析法与函数表达式的区别", "教材位置": "必修1 第3章3.1节 P63"}',
'重要',
ARRAY['解析式表示', '函数关系表达']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-2-02',
'三级',
'函数的列表法表示',
'方法/表示',
'{"定义": "用表格形式表示函数的对应关系", "关键要素": ["表格形式", "数值对应"], "符号表示": "表格形式x值和对应的y值"}',
'{"为什么这样定义": "直观地展示自变量和函数值的对应关系", "核心特征": ["直观性:对应关系一目了然", "有限性:适用于有限个数据点"]}',
'{"必要性": "函数关系中只有有限个数据点时", "特殊说明": "不能表示无限多个点的函数"}',
ARRAY['K3-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "列表法与数据统计表的区别", "教材位置": "必修1 第3章3.1节 P64"}',
'基础',
ARRAY['表格表示', '数据对应理解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-2-03',
'三级',
'函数的图象法表示',
'方法/表示',
'{"定义": "用图象表示函数的对应关系", "关键要素": ["坐标系", "点集"], "符号表示": "图象 = {(x,f(x)) | x∈定义域}"}',
'{"为什么这样定义": "用几何图形直观表示函数关系", "核心特征": ["直观性:函数特征直观可见", "几何性:体现函数的几何性质"]}',
'{"必要性": "需要直观展示函数性质时", "特殊说明": "图象上的每个点都满足函数关系"}',
ARRAY['K3-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "函数图象与一般图形的区别", "教材位置": "必修1 第3章3.1节 P65-66"}',
'重要',
ARRAY['图象识别', '函数性质分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-2-04',
'三级',
'分段函数',
'概念/定义',
'{"定义": "在函数定义域的不同部分,用不同的解析式表示的函数", "关键要素": ["定义域分段", "不同解析式"], "符号表示": "f(x) = {表达式1, 条件1; 表达式2, 条件2; ...}"}',
'{"为什么这样定义": "用统一的函数关系描述实际中的分段现象", "核心特征": ["分段性:定义域分成若干部分", "统一性:仍然是一个函数"]}',
'{"必要性": "函数关系在不同区间具有不同规律时", "特殊说明": "是一个函数,不是多个函数"}',
ARRAY['K3-1-1-01', 'K3-1-2-01'],
'{"包含的子知识点": [], "常见混淆": "分段函数与多个函数的区别", "教材位置": "必修1 第3章3.1节 P67"}',
'重要',
ARRAY['分段函数理解', '分段函数应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-2-05',
'三级',
'区间的概念',
'概念/定义',
'{"定义": "表示连续数集的一种简化记法", "关键要素": ["连续数集", "简化记法"], "符号表示": "闭区间[a,b]{x | a ≤ x ≤ b},开区间(a,b){x | a < x < b},半开半闭区间[a,b){x | a ≤ x < b},无穷区间(a,+∞){x | x > a}"}',
'{"为什么这样定义": "简化连续数集的表示方法", "核心特征": ["连续性:表示连续的数集", "简洁性:比集合描述更简洁"]}',
'{"必要性": "表示连续的实数集合时", "特殊说明": "区间端点要区分开闭"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "区间与一般数集的区别", "教材位置": "必修1 第3章3.1节 P68"}',
'基础',
ARRAY['区间表示', '区间运算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-01',
'二级',
'函数的单调性',
'概念/定义',
'{"定义": "函数值随自变量变化的规律性", "关键要素": ["变化规律", "增减性"], "符号表示": "单调递增或单调递减"}',
'{"为什么这样定义": "描述函数值的变化趋势,是函数的重要性质", "核心特征": ["方向性:有明确的变化方向", "区间性:单调性通常在某个区间内讨论"]}',
'{"必要性": "分析函数变化规律的基础", "特殊说明": "单调性是函数的局部性质"}',
ARRAY['K3-1-1-01'],
'{"包含的子知识点": ["K3-2-1-02", "K3-2-1-03"], "常见混淆": "单调性与函数值大小的区别", "教材位置": "必修1 第3章3.2节 P74-76"}',
'核心',
ARRAY['单调性判断', '单调区间求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-02',
'三级',
'单调递增函数',
'概念/定义',
'{"定义": "对于定义域I内任意两个自变量的值x1、x2当x1 < x2时都有f(x1) < f(x2)那么就称函数f(x)在区间I上是单调递增函数", "关键要素": ["任意x1 < x2", "f(x1) < f(x2)"], "符号表示": "∀x1, x2∈I, x1 < x2 ⇒ f(x1) < f(x2)"}',
'{"为什么这样定义": "描述函数值随自变量增大而增大的规律", "核心特征": ["传递性:自变量大的函数值也大", "一致性:在区间内保持相同的变化趋势"]}',
'{"必要性": "判断函数增减性的基础", "特殊说明": "要求区间内任意两点都满足条件"}',
ARRAY['K3-2-1-01'],
'{"包含的子知识点": [], "常见混淆": "单调递增与函数值正负的区别", "教材位置": "必修1 第3章3.2节 P75"}',
'重要',
ARRAY['单调递增判断', '单调递增区间求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-03',
'三级',
'单调递减函数',
'概念/定义',
'{"定义": "对于定义域I内任意两个自变量的值x1、x2当x1 < x2时都有f(x1) > f(x2)那么就称函数f(x)在区间I上是单调递减函数", "关键要素": ["任意x1 < x2", "f(x1) > f(x2)"], "符号表示": "∀x1, x2∈I, x1 < x2 ⇒ f(x1) > f(x2)"}',
'{"为什么这样定义": "描述函数值随自变量增大而减小的规律", "核心特征": ["反向性:自变量大的函数值反而小", "一致性:在区间内保持相同的减少趋势"]}',
'{"必要性": "分析函数减小时的变化规律", "特殊说明": "同样要求区间内任意两点都满足条件"}',
ARRAY['K3-2-1-01'],
'{"包含的子知识点": [], "常见混淆": "单调递减与函数值为负的区别", "教材位置": "必修1 第3章3.2节 P75"}',
'重要',
ARRAY['单调递减判断', '单调递减区间求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-04',
'三级',
'函数的最大值',
'概念/定义',
'{"定义": "设函数y=f(x)的定义域为I如果存在实数M满足(1)对于任意x∈I都有f(x) ≤ M(2)存在x₀∈I使得f(x₀) = M那么称M是函数y=f(x)的最大值", "关键要素": ["上界性", "可达性"], "符号表示": "M = max{f(x) | x∈I}"}',
'{"为什么这样定义": "确定函数值的变化上限,是优化问题的基础", "核心特征": ["上界性所有函数值都不超过M", "最优性:存在点达到这个最大值"]}',
'{"必要性": "求解优化问题,确定函数值的上限", "特殊说明": "最大值可能不存在"}',
ARRAY['K3-1-1-01', 'K3-1-1-03'],
'{"包含的子知识点": [], "常见混淆": "最大值与上界的区别", "教材位置": "必修1 第3章3.2节 P78"}',
'重要',
ARRAY['最大值求解', '最优化问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-05',
'三级',
'函数的最小值',
'概念/定义',
'{"定义": "设函数y=f(x)的定义域为I如果存在实数m满足(1)对于任意x∈I都有f(x) ≥ m(2)存在x₀∈I使得f(x₀) = m那么称m是函数y=f(x)的最小值", "关键要素": ["下界性", "可达性"], "符号表示": "m = min{f(x) | x∈I}"}',
'{"为什么这样定义": "确定函数值的变化下限,是优化问题的基础", "核心特征": ["下界性所有函数值都不小于m", "最优性:存在点达到这个最小值"]}',
'{"必要性": "求解优化问题,确定函数值的下限", "特殊说明": "最小值可能不存在"}',
ARRAY['K3-1-1-01', 'K3-1-1-03'],
'{"包含的子知识点": [], "常见混淆": "最小值与下界的区别", "教材位置": "必修1 第3章3.2节 P78"}',
'重要',
ARRAY['最小值求解', '最优化问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-2-01',
'二级',
'函数的奇偶性',
'概念/定义',
'{"定义": "函数关于原点或y轴的对称性质", "关键要素": ["对称性", "原点y轴"], "符号表示": "奇函数或偶函数"}',
'{"为什么这样定义": "描述函数图象的对称性质,是函数的重要几何特征", "核心特征": ["对称性:图象具有某种对称性", "代数性:可以用代数等式描述"]}',
'{"必要性": "分析函数的对称性质,简化函数研究", "特殊说明": "要求定义域关于原点对称"}',
ARRAY['K3-1-1-01'],
'{"包含的子知识点": ["K3-2-2-02", "K3-2-2-03"], "常见混淆": "奇偶性与单调性的区别", "教材位置": "必修1 第3章3.2节 P81-84"}',
'核心',
ARRAY['奇偶性判断', '奇偶函数性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-2-02',
'三级',
'偶函数',
'概念/定义',
'{"定义": "如果对于函数f(x)的定义域内任意一个x都有f(-x) = f(x)那么函数f(x)就叫做偶函数", "关键要素": ["f(-x) = f(x)", "定义域关于原点对称"], "符号表示": "∀x∈D, -x∈D且f(-x) = f(x)"}',
'{"为什么这样定义": "描述函数关于y轴对称的性质", "核心特征": ["对称性函数图象关于y轴对称", "不变性:自变量取相反值时函数值不变"]}',
'{"必要性": "判断函数是否关于y轴对称", "特殊说明": "定义域必须关于原点对称"}',
ARRAY['K3-2-2-01'],
'{"包含的子知识点": [], "常见混淆": "偶函数与关于y轴对称图形的区别", "教材位置": "必修1 第3章3.2节 P82"}',
'重要',
ARRAY['偶函数判断', '偶函数性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-2-03',
'三级',
'奇函数',
'概念/定义',
'{"定义": "如果对于函数f(x)的定义域内任意一个x都有f(-x) = -f(x)那么函数f(x)就叫做奇函数", "关键要素": ["f(-x) = -f(x)", "定义域关于原点对称"], "符号表示": "∀x∈D, -x∈D且f(-x) = -f(x)"}',
'{"为什么这样定义": "描述函数关于原点对称的性质", "核心特征": ["对称性:函数图象关于原点对称", "反对称性:自变量取相反值时函数值也相反"]}',
'{"必要性": "判断函数是否关于原点对称", "特殊说明": "奇函数在x=0处有定义时必有f(0)=0"}',
ARRAY['K3-2-2-01'],
'{"包含的子知识点": [], "常见混淆": "奇函数与关于原点对称图形的区别", "教材位置": "必修1 第3章3.2节 P83"}',
'重要',
ARRAY['奇函数判断', '奇函数性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-3-1-01',
'二级',
'幂函数的定义',
'概念/定义',
'{"定义": "形如y = x^α的函数其中x是自变量α是常数", "关键要素": ["底数为x", "指数α为常数"], "符号表示": "y = x^α (α为常数)"}',
'{"为什么这样定义": "研究幂函数性质是理解各类函数的基础", "核心特征": ["幂形式:自变量作为底数", "常指数:指数为固定常数"]}',
'{"必要性": "研究幂函数的性质和应用", "特殊说明": "要考虑定义域和指数α的取值"}',
ARRAY['K3-1-1-01', 'K2-1-1-01'],
'{"包含的子知识点": ["K3-3-1-02"], "常见混淆": "幂函数与指数函数的区别", "教材位置": "必修1 第3章3.3节 P90-91"}',
'核心',
ARRAY['幂函数识别', '幂函数基本性质']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-3-1-02',
'三级',
'常见幂函数类型',
'概念/分类',
'{"定义": "几种常见的幂函数及其性质", "关键要素": ["不同指数", "不同性质"], "符号表示": "y = x一次函数y = x²二次函数y = x³三次函数y = x^(1/2)根函数y = x^(-1)(反比例函数)"}',
'{"为什么这样定义": "通过具体例子理解幂函数的性质特征", "核心特征": ["代表性:涵盖了主要的幂函数类型", "典型性:各自具有典型的图象特征"]}',
'{"必要性": "理解不同幂函数的性质差异", "特殊说明": "不同指数导致不同的函数性质"}',
ARRAY['K3-3-1-01'],
'{"包含的子知识点": [], "常见混淆": "不同幂函数的图象特征", "教材位置": "必修1 第3章3.3节 P91-92"}',
'重要',
ARRAY['幂函数分类', '性质比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-3-2-01',
'三级',
'幂函数的性质',
'定理/性质',
'{"定义": "幂函数在第一象限的共同性质和特征", "关键要素": ["第一象限", "共同性质"], "符号表示": "幂函数在(0,+∞)上的性质"}',
'{"为什么这样定义": "归纳幂函数的共同规律,便于理解和使用", "核心特征": ["过点(1,1):所有幂函数都过点(1,1)", "第一象限:图象都在第一象限"]}',
'{"必要性": "分析幂函数的基本性质", "特殊说明": "不同指数的幂函数在其他象限表现不同"}',
ARRAY['K3-3-1-01'],
'{"包含的子知识点": [], "常见混淆": "不同幂函数性质的异同", "教材位置": "必修1 第3章3.3节 P93-94"}',
'重要',
ARRAY['幂函数性质应用', '图象分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-3-2-02',
'三级',
'幂函数的共同点',
'定理/性质',
'{"定义": "所有幂函数都具有的共同特征", "关键要素": ["共同特征", "幂函数特性"], "符号表示": "幂函数的共同性质"}',
'{"为什么这样定义": "总结幂函数的普遍规律", "核心特征": ["定义域:都包含(0,+∞)", "过定点:都过点(1,1)", "连续性:在定义域内连续"]}',
'{"必要性": "快速识别幂函数的基本特征", "特殊说明": "这是所有幂函数的共同特点"}',
ARRAY['K3-3-1-01'],
'{"包含的子知识点": [], "常见混淆": "共同点与各自特点的区别", "教材位置": "必修1 第3章3.3节 P94"}',
'基础',
ARRAY['幂函数识别', '基本性质判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-4-1-01',
'二级',
'函数的应用',
'概念/定义',
'{"定义": "将函数概念和方法用于解决实际问题", "关键要素": ["实际问题", "函数模型"], "符号表示": "实际问题中的函数关系"}',
'{"为什么这样定义": "数学建模的基础,体现数学的实用性", "核心特征": ["实用性:解决实际问题", "模型性:建立函数模型"]}',
'{"必要性": "需要用数学方法解决实际问题时", "特殊说明": "需要分析问题中的数量关系"}',
ARRAY['K3-1-1-01'],
'{"包含的子知识点": ["K3-4-1-02"], "常见混淆": "函数应用与纯数学计算的区别", "教材位置": "必修1 第3章3.4节 P100-101"}',
'重要',
ARRAY['实际应用', '建模问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-4-1-02',
'三级',
'实际问题建模',
'方法/步骤',
'{"定义": "将实际问题转化为函数模型的步骤和方法", "关键要素": ["问题分析", "函数建立", "求解验证"], "符号表示": "实际问题→函数模型→数学求解→实际答案"}',
'{"为什么这样定义": "规范数学建模过程,提高解决实际问题的能力", "核心特征": ["系统性:完整的建模流程", "实用性:直接解决实际问题"]}',
'{"必要性": "遇到可以用函数模型解决的实际问题时", "特殊说明": "要注意实际意义的合理性"}',
ARRAY['K3-1-1-01', 'K3-4-1-01'],
'{"包含的子知识点": [], "常见混淆": "建模过程与纯数学解题的区别", "教材位置": "必修1 第3章3.4节 P102-105"}',
'重要',
ARRAY['建模题', '应用题求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-1-01',
'二级',
'条件概率',
'概念/定义',
'{"定义": "设A,B为两个随机事件且P(A)>0我们称P(B|A) = P(AB)/P(A)为在事件A发生的条件下事件B发生的条件概率", "公式": "$P(B|A) = \\frac{P(AB)}{P(A)}$", "关键特征": "缩小样本空间以A为新的样本空间计算B发生的概率"}',
'{"为什么这样定义": "条件概率描述了在一个事件发生的条件下,另一个事件发生的概率,是处理条件概率问题的基础", "核心特征": ["以已知事件为新的样本空间", "缩小了可能的结果范围", "反映了事件之间的条件依赖关系"]}',
'{"必要性": "解决条件概率计算的基础", "特殊说明": "要求P(A) > 0"}',
ARRAY['概率的基本概念', '古典概型', '事件关系'],
'{"包含的子知识点": ["K7-1-1-02 概率的乘法公式", "K7-1-2-01 全概率公式", "K7-1-2-02 贝叶斯公式"], "相关方法": ["树状图分析", "样本空间缩减法"], "教材位置": "选择性必修第7章7.1.1节 P49-57"}',
'核心',
ARRAY['条件概率计算', '实际应用问题', '条件概率与独立性关系']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-1-02',
'二级',
'概率的乘法公式',
'公式/定理',
'{"公式": "对任意两个事件A与B若P(A)>0则P(AB) = P(A)P(B|A)", "扩展": "P(ABC) = P(A)P(B|A)P(C|AB)"}',
'{"为什么这样建立": "乘法公式将积事件的概率分解为两个概率的乘积,简化了复杂概率的计算", "核心特征": ["基于条件概率", "适用于事件积的概率计算", "可以推广到多个事件的乘积"]}',
'{"必要性": "计算积事件概率的重要工具", "特殊说明": "要求前一个事件的概率大于0"}',
ARRAY['K7-1-1-01 条件概率'],
'{"包含的子知识点": [], "相关方法": ["事件分解", "树状图"], "教材位置": "选择性必修第7章7.1.1节 P52-56"}',
'核心',
ARRAY['乘法公式应用', '多步概率计算', '独立事件判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-2-01',
'二级',
'全概率公式',
'公式/定理',
'{"公式": "设A₁,A₂,...,Aₙ是一组两两互斥的事件A₁A₂...Aₙ=Ω且P(Aᵢ)>0(i=1,2,...,n)则对任意的事件B⊆Ω有P(B)=∑P(Aᵢ)P(B|Aᵢ)"}',
'{"为什么这样建立": "全概率公式通过将复杂事件分解为若干互斥简单事件的并,利用分类加法和条件概率计算复杂事件的概率", "核心特征": ["事件的互斥性要求", "完备性要求(并集为全集)", "加权平均的思想"]}',
'{"必要性": "解决复杂事件概率计算的重要方法", "特殊说明": "需要确定合适的分类标准"}',
ARRAY['K7-1-1-01 条件概率', 'K7-1-1-02 概率的乘法公式', '互斥事件概念'],
'{"包含的子知识点": ["K7-1-2-02 贝叶斯公式"], "相关方法": ["分类讨论", "概率树图"], "教材位置": "选择性必修第7章7.1.2节 P54-61"}',
'核心',
ARRAY['全概率公式应用', '复杂概率计算', '多步骤问题分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-2-02',
'三级',
'贝叶斯公式',
'公式/定理',
'{"公式": "P(Aᵢ|B) = \\frac{P(Aᵢ)P(B|Aᵢ)}{P(B)} = \\frac{P(Aᵢ)P(B|Aᵢ)}{∑_{k=1}^{n}P(Aₖ)P(B|Aₖ)}", "概念": "先验概率vs后验概率"}',
'{"为什么这样建立": "贝叶斯公式提供了在新信息下修正先验概率的方法,体现了学习型推理的思想", "核心特征": ["利用新信息更新概率", "先验概率到后验概率的转换", "条件概率的逆向应用"]}',
'{"必要性": "统计推断和决策分析的重要工具", "特殊说明": "要求P(B) > 0"}',
ARRAY['K7-1-1-01 条件概率', 'K7-1-2-01 全概率公式'],
'{"包含的子知识点": [], "相关方法": ["概率修正", "统计推断"], "教材位置": "选择性必修第7章7.1.2节 P61-68"}',
'重要',
ARRAY['贝叶斯公式应用', '后验概率计算', '统计推断问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-1-01',
'二级',
'随机变量的概念',
'概念/定义',
'{"定义": "对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X(ω)与之对应,称为随机变量", "分类": "离散型随机变量:可能取值为有限个或可以一一列举的随机变量"}',
'{"为什么这样建立": "随机变量将随机试验的结果数量化,为使用数学工具研究随机现象奠定基础", "核心特征": ["取值依赖样本点", "可能取值明确", "便于表示随机事件"]}',
'{"必要性": "概率论和数理统计的基础概念", "特殊说明": "连续型随机变量取值充满某个区间"}',
ARRAY['样本空间', '函数概念', '概率基础'],
'{"包含的子知识点": ["K7-2-2-01 离散型随机变量的分布列"], "相关方法": ["随机变量表示事件"], "教材位置": "选择性必修第7章7.2节 P61-65"}',
'核心',
ARRAY['随机变量识别', '取值范围判断', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-2-01',
'二级',
'离散型随机变量的分布列',
'概念/表示',
'{"定义": "设离散型随机变量X的可能取值为x₁,x₂,...,xₙ我们称X取每一个值xᵢ的概率P(X=xᵢ)=pᵢ(i=1,2,...,n)为X的概率分布列", "表格形式": "用表格表示X的取值和对应的概率", "性质": "pᵢ≥0且∑pᵢ=1"}',
'{"为什么这样建立": "分布列全面刻画了离散型随机变量的取值规律", "核心特征": ["完整描述取值概率分布", "满足概率基本性质", "便于概率计算和分析"]}',
'{"必要性": "研究离散型随机变量的基础", "特殊说明": "只适用于离散型随机变量"}',
ARRAY['K7-2-1-01 随机变量的概念', '概率概念'],
'{"包含的子知识点": ["K7-2-3-01 离散型随机变量的数字特征"], "相关方法": ["概率计算", "统计分析"], "教材位置": "选择性必修第7章7.2.2节 P65-73"}',
'核心',
ARRAY['分布列建立', '概率计算', '分布列性质验证']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-2-02',
'三级',
'两点分布',
'分布类型',
'{"定义": "只有两个可能结果的随机试验用X表示事件A发生的次数则X服从两点分布", "分布列": "P(X=0)=1-pP(X=1)=p", "应用": "产品检验、硬币抛掷、性别判断等"}',
'{"为什么重要": "两点分布是最简单的离散型分布,是理解复杂分布的基础", "核心特征": ["只有两个可能取值", "参数为成功概率p", "均值为p"]}',
'{"必要性": "伯努利试验的基础", "特殊说明": "适用于二元结果的随机试验"}',
ARRAY['K7-2-2-01 离散型随机变量的分布列'],
'{"包含的子知识点": [], "相关方法": ["二元随机试验分析"], "教材位置": "选择性必修第7章7.2.2节 P68-70"}',
'重要',
ARRAY['两点分布识别', '参数p的确定', '应用分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-3-1-01',
'二级',
'离散型随机变量的均值',
'概念/公式',
'{"定义": "E(X) = x₁p₁ + x₂p₂ + ... + xₙpₙ = ∑xᵢpᵢ", "意义": "随机变量取值的平均水平或分布的集中趋势", "性质": "E(aX+b) = aE(X) + b"}',
'{"为什么这样定义": "均值反映了随机变量取值的加权平均,是描述随机变量集中趋势的重要数字特征", "核心特征": ["概率加权的平均值", "反映集中位置", "可用于比较不同分布的中心位置"]}',
'{"必要性": "随机变量比较和决策的基础", "特殊说明": "要求均值存在(绝对收敛)"}',
ARRAY['K7-2-2-01 离散型随机变量的分布列', '加权平均概念'],
'{"包含的子知识点": ["K7-3-2-01 离散型随机变量的方差"], "相关方法": ["期望计算", "决策分析"], "教材位置": "选择性必修第7章7.3.1节 P74-82"}',
'核心',
ARRAY['均值计算', '期望性质应用', '实际决策分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-3-2-01',
'二级',
'离散型随机变量的方差',
'概念/公式',
'{"定义": "D(X) = ∑(xᵢ-E(X))²pᵢ标准差σ(X) = √D(X)", "简化公式": "D(X) = E(X²) - [E(X)]²", "性质": "D(aX+b) = a²D(X)"}',
'{"为什么这样定义": "方差和标准差度量随机变量取值与其均值的偏离程度,反映离散程度", "核心特征": ["描述离散程度", "方差单位是原变量的平方单位", "标准差与原变量单位相同"]}',
'{"必要性": "风险评估和稳定性分析的重要工具", "特殊说明": "要求均值存在"}',
ARRAY['K7-3-1-01 离散型随机变量的均值', '偏差概念'],
'{"包含的子知识点": [], "相关方法": ["风险评估", "精度分析"], "教材位置": "选择性必修第7章7.3.2节 P82-88"}',
'核心',
ARRAY['方差计算', '标准差应用', '离散程度比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-4-1-01',
'二级',
'伯努利试验',
'概念/定义',
'{"定义": "只包含两个可能结果的试验", "n重伯努利试验": "独立重复进行n次的伯努利试验", "特征": "①同一试验重复n次②各次试验结果相互独立"}',
'{"为什么重要": "伯努利试验是二项分布的基础模型", "核心特征": ["二元结果", "独立性", "重复性"]}',
'{"必要性": "二项分布应用的前提", "特殊说明": "每次试验成功概率相同"}',
ARRAY['独立事件概念'],
'{"包含的子知识点": ["K7-4-1-02 二项分布"], "相关方法": ["独立重复试验分析"], "教材位置": "选择性必修第7章7.4.1节 P94-99"}',
'重要',
ARRAY['伯努利试验识别', '独立性质判断', 'n重试验分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-4-1-02',
'二级',
'二项分布',
'分布类型',
'{"定义": "在n重伯努利试验中设每次试验中事件A发生的概率为p用X表示事件A发生的次数则X服从二项分布B(n,p)", "分布列": "P(X=k) = Cₙᵏpᵏ(1-p)ⁿ⁻ᵏk=0,1,2,...,n", "参数": "n试验次数p成功概率"}',
'{"为什么这样建立": "二项分布描述了独立重复试验中成功次数的分布规律", "核心特征": ["离散取值", "独立同分布", "组合数公式形式"]}',
'{"必要性": "独立重复试验的建模", "特殊说明": "要求各次试验独立且成功概率相同"}',
ARRAY['K7-4-1-01 伯努利试验', 'K7-2-2-01 离散型随机变量的分布列', '组合数'],
'{"包含的子知识点": [], "相关方法": ["独立试验分析", "组合计算"], "教材位置": "选择性必修第7章7.4.1节 P99-108"}',
'核心',
ARRAY['二项分布识别', '参数确定', '概率计算', '均值方差计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-4-2-01',
'二级',
'超几何分布',
'分布类型',
'{"定义": "从N件产品中随机抽取n件(不放回)用X表示抽取的n件产品中的次品数则X服从超几何分布", "分布列": "P(X=k) = CᴹᵏC_{N-M}ⁿ⁻ᵏ/Cᴺⁿk=m,m+1,...,r", "参数": "N总数M次品数n抽取数"}',
'{"为什么这样建立": "超几何分布描述了不放回抽样中次品数的分布规律", "核心特征": ["不放回抽样", "有限总体", "超几何分布形式"]}',
'{"必要性": "不放回抽样的概率建模", "特殊说明": "各次抽取不独立"}',
ARRAY['古典概型', '组合数', 'K7-2-2-01 离散型随机变量的分布列'],
'{"包含的子知识点": [], "相关方法": ["不放回抽样分析"], "教材位置": "选择性必修第7章7.4.2节 P109-116"}',
'核心',
ARRAY['超几何分布识别', '参数确定', '不放回抽样问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-5-1-01',
'二级',
'正态分布',
'分布类型',
'{"定义": "若随机变量X的概率密度函数为f(x) = 1/(σ√(2π))e^(-(x-μ)²/(2σ²)则称X服从正态分布N(μ,σ²)", "标准正态分布": "μ=0, σ=1时的正态分布", "参数意义": "μ为均值,σ²为方差"}',
'{"为什么重要": "正态分布广泛存在于自然现象中,是概率统计的重要分布", "核心特征": ["连续型分布", "钟形密度曲线", "由两个参数完全确定"]}',
'{"必要性": "连续随机变量的重要分布模型", "特殊说明": "取值范围充满整个实轴"}',
ARRAY['连续型随机变量', '密度函数', '指数函数'],
'{"包含的子知识点": [], "相关方法": ["统计分析", "质量控制"], "教材位置": "选择性必修第7章7.5节 P117-128"}',
'核心',
ARRAY['正态分布识别', '参数估计', '概率区间计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-5-1-02',
'三级',
'3σ原则',
'性质/应用',
'{"内容": "P(μ-σ < X < μ+σ) ≈ 0.6827P(μ-2σ < X < μ+2σ) ≈ 0.9545P(μ-3σ < X < μ+3σ) ≈ 0.9973", "应用": "质量控制中认为异常值的判断标准"}',
'{"为什么这样建立": "3σ原则提供了正态分布中数据分散的量化标准", "核心特征": ["数据集中在均值附近", "异常值概率很小", "实用的质量控制标准"]}',
'{"必要性": "异常检测和质量控制", "特殊说明": "适用于近似正态分布的数据"}',
ARRAY['K7-5-1-01 正态分布', '标准差概念'],
'{"包含的子知识点": [], "相关方法": ["异常值检测", "质量控制"], "教材位置": "选择性必修第7章7.5节 P124-128"}',
'重要',
ARRAY['3σ原则应用', '异常值判断', '质量控制']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-3-01',
'三级',
'随机变量的独立性',
'概念/关系',
'{"定义": "若P(AB) = P(A)P(B)则称事件A与B相互独立", "随机变量独立": "若对任意x,y有P(X≤x,Y≤y) = P(X≤x)P(Y≤y)则随机变量X与Y相互独立"}',
'{"为什么重要": "独立性简化了概率计算,是概率论的重要概念", "核心特征": ["概率可分解为乘积", "事件间无影响", "随机变量的联合分布可分解"]}',
'{"必要性": "简化概率计算的重要假设", "特殊说明": "独立性比不相关更强"}',
ARRAY['条件概率', '积事件概率'],
'{"包含的子知识点": [], "相关方法": ["独立事件判断", "独立随机变量"], "教材位置": "选择性必修第7章7.1节 P75-77"}',
'重要',
ARRAY['独立性判断', '概率计算简化', '独立随机变量分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-3-1-02',
'三级',
'两点分布的均值',
'公式/性质',
'{"结果": "如果X服从两点分布P(X=1)=pP(X=0)=1-p则E(X) = p", "解释": "一次伯努利试验中成功次数的期望值等于成功概率"}',
'{"为什么这样计算": "两点分布的均值直观上就是成功的概率", "核心特征": ["期望值等于参数p", "反映单次试验的平均成功次数"]}',
'{"必要性": "伯努利试验分析", "特殊说明": "只适用于二元结果试验"}',
ARRAY['K7-2-2-02 两点分布', 'K7-3-1-01 离散型随机变量的均值'],
'{"包含的子知识点": [], "相关方法": ["伯努利试验分析"], "教材位置": "选择性必修第7章7.3.1节 P79"}',
'基础',
ARRAY['期望计算', '参数解释']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-4-1-03',
'三级',
'二项分布的均值和方差',
'公式/性质',
'{"均值": "若XB(n,p)则E(X) = np", "方差": "若XB(n,p)则D(X) = np(1-p)"}',
'{"为什么这样计算": "二项分布的均值和方差有简洁的公式,便于应用", "核心特征": ["期望与试验次数和概率成比例", "方差与期望和(1-p)有关", "便于计算和应用"]}',
'{"必要性": "二项分布应用的基础计算", "特殊说明": "适用于任何二项分布"}',
ARRAY['K7-4-1-02 二项分布', 'K7-3-1-01 均值', 'K7-3-2-01 方差'],
'{"包含的子知识点": [], "相关方法": ["期望方差计算", "二项分布应用"], "教材位置": "选择性必修第7章7.4.1节 P108-113"}',
'重要',
ARRAY['均值方差计算', '参数估计', '二项分布应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-4-2-02',
'三级',
'超几何分布的均值',
'公式/性质',
'{"结果": "若X服从超几何分布h(n,N,M)则E(X) = np其中p = M/N为次品率"}',
'{"为什么这样计算": "超几何分布的均值等于抽样比例与总体规模的乘积", "核心特征": ["无放回抽样的期望", "与总体比例一致", "抽样代表性"]}',
'{"必要性": "无放回抽样的统计分析", "特殊说明": "适用于任何超几何分布"}',
ARRAY['K7-4-2-01 超几何分布', 'K7-3-1-01 均值', '比例概念'],
'{"包含的子知识点": [], "相关方法": ["无放回抽样分析", "统计推断"], "教材位置": "选择性必修第7章7.4.2节 P116-121"}',
'重要',
ARRAY['均值计算', '抽样分析', '统计推断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-5-1-03',
'三级',
'正态分布的均值和方差',
'公式/性质',
'{"均值": "若XN(μ,σ²)则E(X) = μ", "方差": "若XN(μ,σ²)则D(X) = σ²", "标准差": "σ(X) = √D(X) = σ"}',
'{"为什么这样计算": "正态分布的参数就是其均值和方差", "核心特征": ["参数直接反映数字特征", "μ决定集中位置", "σ²决定离散程度"]}',
'{"必要性": "正态分布参数识别的基础", "特殊说明": "适用于任何正态分布"}',
ARRAY['K7-5-1-01 正态分布', 'K7-3-1-01 均值', 'K7-3-2-01 方差'],
'{"包含的子知识点": [], "相关方法": ["参数估计", "正态分布应用"], "教材位置": "选择性必修第7章7.5节 P128-131"}',
'重要',
ARRAY['参数确定', '均值方差计算', '正态分布应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-1-1-01',
'二级',
'相关关系',
'概念/定义',
'{"定义": "两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系", "特征": "变量间存在关联,但不能用一个变量精确确定另一个变量的值", "举例": "人的体重与身高之间存在相关关系,但身高不能完全决定体重"}',
'{"为什么这样定义": "现实世界中许多变量之间存在关联但不是函数关系,需要用相关关系来描述这种不完全确定的依赖关系", "核心特征": ["变量间存在相互影响", "一个变量不能完全决定另一个变量", "受其他因素影响"]}',
'{"必要性": "研究变量间关系的基础概念", "特殊说明": "相关关系不同于函数关系,后者可以由自变量精确确定因变量"}',
ARRAY['函数概念', '变量关系'],
'{"包含的子知识点": ["K8-1-1-02 正相关与负相关", "K8-1-1-03 线性相关与非线性相关"], "相关方法": ["散点图分析", "相关性判断"], "教材位置": "选择性必修第8章8.1.1节 P98-100"}',
'核心',
ARRAY['相关关系识别', '与函数关系的区分', '实际例子分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-1-1-02',
'二级',
'正相关与负相关',
'概念/分类',
'{"正相关": "当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势", "负相关": "当一个变量的值增加时,另一个变量的相应值呈现减小的趋势"}',
'{"为什么这样分类": "通过散点图可以直观观察变量间相关关系的方向,为定量分析提供基础", "核心特征": ["正相关:同向变化趋势", "负相关:反向变化趋势", "可通过散点图直观判断"]}',
'{"必要性": "描述相关关系的基本方向", "特殊说明": "需要通过散点图或数据验证"}',
ARRAY['K8-1-1-01 相关关系'],
'{"包含的子知识点": ["K8-1-2-01 样本相关系数"], "相关方法": ["散点图分析", "趋势判断"], "教材位置": "选择性必修第8章8.1.1节 P100-101"}',
'核心',
ARRAY['正负相关判断', '散点图分析', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-1-1-03',
'三级',
'线性相关与非线性相关',
'概念/分类',
'{"线性相关": "散点落在一条直线附近的相关关系", "非线性相关": "散点落在某条曲线附近但不是直线附近的相关关系"}',
'{"为什么这样区分": "不同类型的相关关系需要用不同的数学模型来描述和拟合", "核心特征": ["线性相关:可用直线模型拟合", "非线性相关:需要曲线模型拟合", "通过散点图分布特征判断"]}',
'{"必要性": "选择合适统计模型的基础", "特殊说明": "有些情况下可能没有明显相关性"}',
ARRAY['K8-1-1-01 相关关系', 'K8-1-1-02 正相关与负相关'],
'{"包含的子知识点": [], "相关方法": ["模型选择", "曲线拟合"], "教材位置": "选择性必修第8章8.1.1节 P100-101"}',
'重要',
ARRAY['相关性类型判断', '模型选择', '散点图分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-1-2-01',
'二级',
'样本相关系数',
'概念/公式',
'{"定义": "描述成对样本数据线性相关程度的数字特征", "公式": "$r = \\frac{\\sum_{i=1}^{n} (x_i - \\bar{x})(y_i - \\bar{y})}{\\sqrt{\\sum_{i=1}^{n} (x_i - \\bar{x})^2} \\sqrt{\\sum_{i=1}^{n} (y_i - \\bar{y})^2}}$", "取值范围": "$-1 \\le r \\le 1$"}',
'{"为什么这样建立": "通过标准化处理消除度量单位影响,构造出能够定量刻画线性相关程度的统计量", "核心特征": ["取值范围在[-1,1]之间", "r>0时为正相关r<0时为负相关", "|r|越接近1线性相关程度越强"]}',
'{"必要性": "定量分析变量间线性相关程度的重要工具", "特殊说明": "只反映线性相关程度,不反映非线性相关"}',
ARRAY['均值概念', '标准差概念', 'K8-1-1-02 正相关与负相关'],
'{"包含的子知识点": [], "相关方法": ["相关性分析", "统计推断"], "教材位置": "选择性必修第8章8.1.2节 P102-108"}',
'核心',
ARRAY['相关系数计算', '相关程度判断', '统计推断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-2-1-01',
'二级',
'一元线性回归模型',
'概念/模型',
'{"模型": "$\\begin{cases} Y = bx + a + e \\\\ E(e) = 0, D(e) = \\sigma^2 \\end{cases}$", "变量说明": "Y为因变量响应变量x为自变量解释变量e为随机误差", "参数说明": "a为截距参数b为斜率参数"}',
'{"为什么这样建立": "当变量间存在线性相关关系时,用线性函数刻画一个变量对另一个变量的影响,其他因素作为随机误差处理", "核心特征": ["线性关系描述", "考虑随机误差", "参数需要估计"]}',
'{" necessity": "研究线性相关变量间统计关系的基础", "特殊说明": "要求变量间存在线性相关关系"}',
ARRAY['K8-1-1-03 线性相关', '随机变量概念'],
'{"包含的子知识点": ["K8-2-2-01 最小二乘估计"], "相关方法": ["回归分析", "参数估计"], "教材位置": "选择性必修第8章8.2.1节 P110-112"}',
'核心',
ARRAY['模型理解', '参数解释', '应用分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-2-2-01',
'二级',
'最小二乘估计',
'方法/公式',
'{"原理": "使残差平方和$Q = \\sum_{i=1}^{n} (y_i - bx_i - a)^2$达到最小", "参数估计公式": "$\\hat{b} = \\frac{\\sum_{i=1}^{n} (x_i - \\bar{x})(y_i - \\bar{y})}{\\sum_{i=1}^{n} (x_i - \\bar{x})^2}$$\\hat{a} = \\bar{y} - \\hat{b}\\bar{x}$", "经验回归方程": "$\\hat{y} = \\hat{b}x + \\hat{a}$"}',
'{"为什么这样建立": "通过使观测值与预测值偏差的平方和最小,找到最佳拟合直线", "核心特征": ["残差平方和最小化", "参数有明确的计算公式", "提供最佳线性拟合"]}',
'{"必要性": "估计一元线性回归模型参数的标准方法", "特殊说明": "适用于线性相关关系的变量"}',
ARRAY['K8-2-1-01 一元线性回归模型', '极值概念'],
'{"包含的子知识点": ["K8-2-2-02 残差分析"], "相关方法": ["参数估计", "模型拟合"], "教材位置": "选择性必修第8章8.2.2节 P113-119"}',
'核心',
ARRAY['参数计算', '回归方程建立', '最小二乘原理应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-2-2-02',
'三级',
'残差与残差分析',
'概念/方法',
'{"残差定义": "观测值减去预测值,即$e_i = y_i - \\hat{y}_i$", "残差图": "以自变量为横坐标,残差为纵坐标的散点图", "残差分析目的": "检验模型拟合效果,判断模型假设是否满足"}',
'{"为什么需要残差分析": "通过分析残差的分布特征可以评价模型的好坏,发现模型改进的方向", "核心特征": ["残差反映模型拟合误差", "残差图检验模型假设", "用于模型诊断和改进"]}',
'{"必要性": "评价回归模型拟合效果的重要工具", "特殊说明": "残差应满足模型假设条件"}',
ARRAY['K8-2-2-01 最小二乘估计'],
'{"包含的子知识点": [], "相关方法": ["模型诊断", "假设检验"], "教材位置": "选择性必修第8章8.2.2节 P116-119"}',
'重要',
ARRAY['残差计算', '残差图分析', '模型评价']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-3-1-01',
'二级',
'分类变量与2×2列联表',
'概念/表示',
'{"分类变量": "取值于有限个类别的随机变量,通常用数值作为编号", "2×2列联表": "整理成对分类变量数据的交叉分类频数表", "表格结构": "包含两个分类变量的四个组合的频数统计"}',
'{"为什么需要列联表": "列联表系统地整理了分类变量的联合分布信息,便于分析变量间的关联性", "核心特征": ["交叉分类统计", "频数分布展示", "为独立性检验提供数据基础"]}',
'{"必要性": "研究分类变量间关联关系的基础工具", "特殊说明": "适用于取值为两个类别的分类变量"}',
ARRAY['分类变量概念', '频数分布'],
'{"包含的子知识点": ["K8-3-2-01 独立性检验"], "相关方法": ["频数分析", "关联性研究"], "教材位置": "选择性必修第8章8.3.1节 P129-133"}',
'核心',
ARRAY['列联表制作', '频数分析', '分类变量处理']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-3-2-01',
'二级',
'独立性检验',
'方法/检验',
'{"零假设": "$H_0$: 分类变量X和Y相互独立", "检验统计量": "$\\chi^2 = \\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$", "检验规则": "当$\\chi^2 \\ge \\chi^2_\\alpha$时,拒绝零假设,认为变量不独立"}',
'{"为什么这样建立": "基于小概率原理,比较观测频数与期望频数的差异,判断变量间是否独立", "核心特征": ["基于卡方统计量", "使用小概率原理", "控制犯错误概率"]}',
'{"必要性": "检验分类变量间关联性的统计方法", "特殊说明": "需要样本容量充分大"}',
ARRAY['K8-3-1-01 2×2列联表', '假设检验概念'],
'{"包含的子知识点": [], "相关方法": ["假设检验", "统计推断"], "教材位置": "选择性必修第8章8.3.2节 P133-141"}',
'核心',
ARRAY['独立性检验', '统计推断', '结论解释']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-1-1-04',
'三级',
'散点图',
'概念/工具',
'{"定义": "用直角坐标系中的点表示成对样本数据的统计图", "作用": "直观描述两个变量之间的关系和分布特征", "制作方法": "以一个变量为横轴,另一个变量为纵轴,将成对数据表示为坐标点"}',
'{"为什么使用散点图": "散点图能够直观展示变量间的关系类型、相关程度和异常值,为后续分析提供直观依据", "核心特征": ["直观展示变量关系", "识别相关性类型", "发现异常值"]}',
'{"必要性": "分析成对数据关系的基础工具", "特殊说明": "适用于数值型变量"}',
ARRAY['坐标系概念', '成对数据'],
'{"包含的子知识点": [], "相关方法": ["数据可视化", "探索性数据分析"], "教材位置": "选择性必修第8章8.1.1节 P99-101"}',
'重要',
ARRAY['散点图制作', '关系判断', '数据特征识别']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-2-2-03',
'三级',
'决定系数R²',
'概念/指标',
'{"定义": "$R^2 = 1 - \\frac{\\sum_{i=1}^n (y_i - \\hat{y}_i)^2}{\\sum_{i=1}^n (y_i - \\bar{y})^2}$", "意义": "反映回归模型对数据变异的解释程度", "取值范围": "0 ≤ R² ≤ 1越接近1拟合效果越好"}',
'{"为什么这样定义": "决定系数量化了回归模型解释因变量变异的比例,是评价模型拟合优度的重要指标", "核心特征": ["衡量模型拟合优度", "取值范围[0,1]", "值越大拟合效果越好"]}',
'{"必要性": "评价回归模型拟合效果的重要指标", "特殊说明": "在线性回归中等于样本相关系数的平方"}',
ARRAY['K8-2-2-01 最小二乘估计', '方差概念'],
'{"包含的子知识点": [], "相关方法": ["模型评价", "拟合优度检验"], "教材位置": "选择性必修第8章8.2.2节 P123-124"}',
'重要',
ARRAY['R²计算', '模型评价', '拟合效果比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K8-3-2-02',
'三级',
'临界值与检验水平',
'概念/参数',
'{"检验水平α": "预先设定的小概率值通常取0.1, 0.05, 0.01等", "临界值x_α": "满足P(χ² ≥ x_α) = α的值", "常用临界值": "x₀.₁=2.706, x₀.₀₅=3.841, x₀.₀₁=6.635等"}',
'{"为什么需要临界值": "临界值为统计推断提供判断标准,控制犯第一类错误的概率", "核心特征": ["基于小概率原理", "控制错误概率", "提供明确判断标准"]}',
'{"必要性": "进行假设检验的必要参数", "特殊说明": "α越小,检验标准越严格"}',
ARRAY['K8-3-2-01 独立性检验', '小概率原理'],
'{"包含的子知识点": [], "相关方法": ["假设检验", "统计推断"], "教材位置": "选择性必修第8章8.3.2节 P135-136"}',
'重要',
ARRAY['临界值查找', '检验水平选择', '统计推断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-01',
'二级',
'平面向量的概念',
'概念/定义',
'{"定义": "既有大小又有方向的量叫做向量,而只有大小没有方向的量称为数量", "关键要素": ["大小", "方向"], "符号表示": "印刷用黑体a书写用a→"}',
'{"为什么这样定义": "从物理量(力、位移、速度等)抽象出来,这些量都有大小和方向两个属性", "核心特征": ["具有大小和方向两个基本属性", "与数量(只有大小)相区别"]}',
'{"必要性": "描述既有大小又有方向的物理量和数学量", "特殊说明": "向量与数量有本质区别"}',
ARRAY['必修第一册 集合概念', '物理中的矢量概念'],
'{"包含的子知识点": ["K6-1-1-02 有向线段", "K6-1-1-03 向量的几何表示"], "常见混淆": "数量与向量的区别,矢量与标量的区别", "教材位置": "必修第二册 第6章6.1节 P8-10"}',
'核心',
ARRAY['概念理解', '判断识别', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-02',
'三级',
'有向线段',
'概念/定义',
'{"定义": "具有方向的线段叫做有向线段以A为起点、B为终点的有向线段记作AB→", "关键要素": ["起点", "方向", "长度"], "符号表示": "AB→"}',
'{"为什么这样定义": "用直观的几何图形表示向量,便于理解和操作", "核心特征": ["起点必须写在终点前面", "包含三个要素:起点、方向、长度"]}',
'{"必要性": "向量的几何表示基础", "特殊说明": "知道了起点、方向和长度,终点就唯一确定了"}',
ARRAY['K6-1-1-01 平面向量的概念'],
'{"包含的子知识点": [], "常见混淆": "有向线段与普通线段的区别", "教材位置": "必修第二册 第6章6.1.2节 P10"}',
'重要',
ARRAY['作图', '计算', '判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-03',
'三级',
'向量的几何表示',
'概念/定义',
'{"定义": "向量可以用有向线段AB→来表示有向线段的长度|AB→|表示向量的大小,有向线段的方向表示向量的方向", "关键要素": ["长度表示大小", "方向表示方向"], "符号表示": "AB→或a"}',
'{"为什么这样表示": "使向量有了直观形象,便于几何理解和运算", "核心特征": ["用线段长度表示向量大小", "用箭头指向表示向量方向"]}',
'{"必要性": "向量运算和性质研究的基础", "特殊说明": "可用字母a,b,c等表示向量"}',
ARRAY['K6-1-1-01 平面向量的概念', 'K6-1-1-02 有向线段'],
'{"包含的子知识点": [], "常见混淆": "向量与有向线段的关系", "教材位置": "必修第二册 第6章6.1.2节 P10"}',
'核心',
ARRAY['表示方法', '图形理解', '运算基础']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-04',
'三级',
'向量的长度(模)',
'概念/定义',
'{"定义": "向量AB→的大小称为向量AB→的长度或称模记作|AB→|", "关键要素": ["大小", "非负性"], "符号表示": "|AB→|或|a|"}',
'{"为什么要有长度概念": "长度是向量的基本属性,用于向量的大小比较和运算", "核心特征": ["向量的长度是一个非负实数", "长度为零的向量是零向量"]}',
'{"必要性": "向量运算和性质的重要参数", "特殊说明": "向量的长度与向量的方向同样重要"}',
ARRAY['K6-1-1-03 向量的几何表示'],
'{"包含的子知识点": ["K6-1-1-05 零向量", "K6-1-1-06 单位向量"], "常见混淆": "向量长度与向量的区别", "教材位置": "必修第二册 第6章6.1.2节 P10"}',
'核心',
ARRAY['计算', '比较', '运算应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-05',
'三级',
'零向量',
'概念/定义',
'{"定义": "长度为0的向量叫做零向量记作0", "关键要素": ["长度为零", "方向不确定"], "符号表示": "0"}',
'{"为什么引入零向量": "完善向量体系,便于向量运算的完备性", "核心特征": ["长度为0", "方向可以是任意方向", "与任意向量平行"]}',
'{"必要性": "向量减法和运算律的需要", "特殊说明": "零向量的相反向量仍是零向量"}',
ARRAY['K6-1-1-04 向量的长度(模)'],
'{"包含的子知识点": [], "常见混淆": "零向量与数字0的区别", "教材位置": "必修第二册 第6章6.1.2节 P10"}',
'重要',
ARRAY['性质判断', '运算应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-06',
'三级',
'单位向量',
'概念/定义',
'{"定义": "长度等于1个单位长度的向量叫做单位向量", "关键要素": ["长度为1", "方向任意的"], "符号表示": "e通常用e表示单位向量"}',
'{"为什么引入单位向量": "标准化向量,便于表示方向和进行向量运算", "核心特征": ["长度固定为1", "可以是任意方向", "用于表示特定方向"]}',
'{"必要性": "表示方向和向量标准化的基础", "特殊说明": "同一方向可以有两个相反的单位向量"}',
ARRAY['K6-1-1-04 向量的长度(模)'],
'{"包含的子知识点": [], "常见混淆": "单位向量与方向向量的区别", "教材位置": "必修第二册 第6章6.1.2节 P10"}',
'重要',
ARRAY['识别', '构造', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-07',
'三级',
'平行向量',
'概念/定义',
'{"定义": "方向相同或相反的非零向量叫做平行向量", "关键要素": ["方向相同或相反", "非零向量"], "符号表示": "a∥b"}',
'{"为什么这样定义": "描述向量间的方向关系,是向量共线概念的基础", "核心特征": ["方向相同或相反", "不包括零向量(另有规定)", "是向量间的基本位置关系"]}',
'{"必要性": "研究向量位置关系的基础", "特殊说明": "规定零向量与任意向量平行"}',
ARRAY['K6-1-1-01 平面向量的概念'],
'{"包含的子知识点": ["K6-1-1-08 共线向量"], "常见混淆": "平行与共线的区别", "教材位置": "必修第二册 第6章6.1.3节 P10-11"}',
'核心',
ARRAY['判断识别', '关系分析', '运算基础']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-08',
'三级',
'共线向量',
'概念/定义',
'{"定义": "平行向量也叫做共线向量,任一组平行向量都可以平移到同一条直线上", "关键要素": ["可平移到同一直线", "方向关系"], "符号表示": "a∥b"}',
'{"为什么叫共线向量": "因为平行向量可以通过平移使其在同一直线上表示", "核心特征": ["可以平移到同一直线", "保持方向不变", "便于几何理解"]}',
'{"必要性": "向量几何表示和运算的重要概念", "特殊说明": "共线不要求有公共起点"}',
ARRAY['K6-1-1-07 平行向量'],
'{"包含的子知识点": [], "常见混淆": "共线向量与平行向量的关系", "教材位置": "必修第二册 第6章6.1.3节 P11"}',
'重要',
ARRAY['判断', '作图', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-1-1-09',
'三级',
'相等向量',
'概念/定义',
'{"定义": "长度相等且方向相同的向量叫做相等向量", "关键要素": ["长度相等", "方向相同"], "符号表示": "a = b"}',
'{"为什么这样定义": "建立向量等价关系,是向量运算的基础", "核心特征": ["大小和方向都相同", "与起点位置无关", "可用同一条有向线段表示"]}',
'{"必要性": "向量相等性质和运算的基础", "特殊说明": "任意两个相等的非零向量都可用同一条有向线段表示"}',
ARRAY['K6-1-1-04 向量的长度(模)', 'K6-1-1-07 平行向量'],
'{"包含的子知识点": [], "常见混淆": "相等向量与相同位置向量的区别", "教材位置": "必修第二册 第6章6.1.3节 P11"}',
'核心',
ARRAY['判断识别', '运算应用', '性质证明']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-1-01',
'二级',
'向量的加法运算',
'概念/定义',
'{"定义": "已知非零向量a,b在平面内取任意一点A作AB→=aBC→=b则向量AC→叫做a与b的和记作a+b", "关键要素": ["首尾相接", "和向量"], "符号表示": "a+b"}',
'{"为什么这样定义": "从位移合成和力合成等物理现象抽象而来,符合实际应用需求", "核心特征": ["基于物理背景", "可以用三角形法则作图", "结果仍是向量"]}',
'{"必要性": "向量运算体系的基础运算", "特殊说明": "零向量与任意向量的加法满足a+0=a"}',
ARRAY['K6-1-1-01 平面向量的概念', 'K6-1-1-03 向量的几何表示'],
'{"包含的子知识点": ["K6-2-1-02 向量加法的三角形法则", "K6-2-1-03 向量加法的平行四边形法则"], "常见混淆": "向量加法与数量加法的区别", "教材位置": "必修第二册 第6章6.2.1节 P14-17"}',
'核心',
ARRAY['作图', '计算', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-1-02',
'三级',
'向量加法的三角形法则',
'定理/性质',
'{"定义": "在平面内任取一点A作AB→=aBC→=b则向量AC→=a+b这种求向量和的方法称为三角形法则", "关键要素": ["首尾相接", "三角形"], "几何表示": "AB→+BC→=AC→"}',
'{"为什么使用三角形法则": "直观体现了向量合成的几何意义,便于理解和作图", "核心特征": ["第一个向量的终点作为第二个向量的起点", "和向量从第一个向量起点指向第二个向量终点", "位移的合成是三角形法则的物理模型"]}',
'{"必要性": "向量加法的基本作图方法", "特殊说明": "适用于任意两个向量的加法"}',
ARRAY['K6-2-1-01 向量的加法运算'],
'{"包含的子知识点": [], "常见混淆": "三角形法则与平行四边形法则的区别", "教材位置": "必修第二册 第6章6.2.1节 P14-15"}',
'核心',
ARRAY['作图应用', '计算验证', '物理应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-1-03',
'三级',
'向量加法的平行四边形法则',
'定理/性质',
'{"定义": "以同一点O为起点的两个已知向量a,b以OA,OB为邻边作平行四边形OACB则以O为起点的向量OC→就是向量a与b的和", "关键要素": ["同起点", "平行四边形", "对角线"], "几何表示": "以OA,OB为邻边的平行四边形对角线OC→"}',
'{"为什么使用平行四边形法则": "力的合成是平行四边形法则的物理模型,直观易懂", "核心特征": ["两个向量有共同起点", "构成平行四边形的邻边", "对角线表示和向量"]}',
'{"必要性": "向量加法的另一种重要方法", "特殊说明": "与三角形法则本质上是一致的"}',
ARRAY['K6-2-1-01 向量的加法运算', '平行四边形性质'],
'{"包含的子知识点": [], "常见混淆": "平行四边形法则与三角形法则的关系", "教材位置": "必修第二册 第6章6.2.1节 P15-16"}',
'核心',
ARRAY['作图应用', '物理应用', '证明题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-1-04',
'三级',
'向量加法的运算律',
'定理/性质',
'{"交换律": "a+b=b+a", "结合律": "(a+b)+c=a+(b+c)", "性质": "向量加法满足交换律和结合律"}',
'{"为什么成立": "可以通过几何作图验证,符合代数运算的基本性质", "核心特征": ["交换律:改变加法顺序结果不变", "结合律:多个向量连加可以任意结合", "简化向量运算"]}',
'{"必要性": "向量代数运算的基础", "特殊说明": "使得向量运算更加灵活方便"}',
ARRAY['K6-2-1-01 向量的加法运算'],
'{"包含的子知识点": [], "常见混淆": "向量加法运算律与实数加法运算律的异同", "教材位置": "必修第二册 第6章6.2.1节 P16"}',
'核心',
ARRAY['计算验证', '性质应用', '证明题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-2-01',
'三级',
'相反向量',
'概念/定义',
'{"定义": "与向量a长度相等方向相反的向量叫做a的相反向量记作-a", "关键要素": ["长度相等", "方向相反"], "符号表示": "-a"}',
'{"为什么引入相反向量": "为定义向量减法做准备,完善向量运算体系", "核心特征": ["-(-a)=a", "a+(-a)=(-a)+a=0", "a与-b互为相反向量当且仅当a=-b"]}',
'{"必要性": "向量减法定义的基础", "特殊说明": "零向量的相反向量仍是零向量"}',
ARRAY['K6-1-1-01 平面向量的概念'],
'{"包含的子知识点": [], "常见混淆": "相反向量与反向向量的区别", "教材位置": "必修第二册 第6章6.2.2节 P18-19"}',
'重要',
ARRAY['概念理解', '运算应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-2-02',
'二级',
'向量的减法运算',
'概念/定义',
'{"定义": "向量a加上b的相反向量叫做a与b的差即a-b=a+(-b)", "关键要素": ["加相反向量", "差的定义"], "符号表示": "a-b"}',
'{"为什么这样定义": "类比数的减法,减去一个数等于加上这个数的相反数", "核心特征": ["减法可以转化为加法", "结果仍是向量", "是加法的逆运算"]}',
'{"必要性": "完善向量运算体系,解决向量差的问题", "特殊说明": "向量的减法可以转化为向量的加法"}',
ARRAY['K6-2-1-01 向量的加法运算', 'K6-2-2-01 相反向量'],
'{"包含的子知识点": ["K6-2-2-03 向量减法的几何意义"], "常见混淆": "向量减法与向量加法的区别", "教材位置": "必修第二册 第6章6.2.2节 P18-19"}',
'核心',
ARRAY['计算', '作图', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-2-03',
'三级',
'向量减法的几何意义',
'定理/性质',
'{"定义": "a-b可以表示为从向量b的终点指向向量a的终点的向量", "几何表示": "若OA→=aOB→=b则BA→=a-b"}',
'{"为什么这样表示": "通过向量加法的平行四边形法则推导得出,直观易懂", "核心特征": ["从b的终点指向a的终点", "构成三角形OBA", "便于几何作图和理解"]}',
'{"必要性": "向量减法的作图方法,便于几何应用", "特殊说明": "两个向量要有共同的起点"}',
ARRAY['K6-2-2-02 向量的减法运算'],
'{"包含的子知识点": [], "常见混淆": "a-b与b-a的区别", "教材位置": "必修第二册 第6章6.2.2节 P18-19"}',
'核心',
ARRAY['作图', '计算', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-3-01',
'二级',
'向量的数乘运算',
'概念/定义',
'{"定义": "实数λ与向量a的积是一个向量记作λa它的长度与方向规定为(1)|λa|=|λ||a|(2)当λ>0时λa的方向与a的方向相同当λ<0时λa的方向与a的方向相反", "关键要素": ["实数乘向量", "长度和方向的确定"], "符号表示": "λa"}',
'{"为什么这样定义": "类比数的乘法从a+a+a等多次加法抽象而来符合几何直观", "核心特征": ["结果是向量", "长度是原向量长度的|λ|倍", "方向由λ的符号决定"]}',
'{"必要性": "向量与数的结合,扩大向量运算范围", "特殊说明": "当λ=0时λa=0"}',
ARRAY['K6-1-1-01 平面向量的概念', '实数运算'],
'{"包含的子知识点": ["K6-2-3-02 向量数乘的运算律"], "常见混淆": "数乘与数量乘法的区别", "教材位置": "必修第二册 第6章6.2.3节 P20-23"}',
'核心',
ARRAY['计算', '作图', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-3-02',
'三级',
'向量数乘的运算律',
'定理/性质',
'{"结合律": "λ(μa)=(λμ)a", "分配律1": "(λ+μ)a=λa+μa", "分配律2": "λ(a+b)=λa+λb"}',
'{"为什么成立": "可以通过几何作图或代数推导验证,符合运算的基本性质", "核心特征": ["结合律:数乘的结合", "分配律:数乘对加法的分配", "简化向量线性运算"]}',
'{"必要性": "向量线性运算的基础", "特殊说明": "适用于任意实数和向量"}',
ARRAY['K6-2-3-01 向量的数乘运算'],
'{"包含的子知识点": [], "常见混淆": "分配律的两个形式的区别", "教材位置": "必修第二册 第6章6.2.3节 P21"}',
'核心',
ARRAY['计算验证', '证明', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-3-03',
'三级',
'向量共线的充要条件',
'定理/性质',
'{"定理": "向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ使b=λa", "条件": "a≠0b与a共线", "结论": "存在唯一λ使b=λa"}',
'{"为什么成立": "从向量数乘的几何意义和共线向量的定义推导得出", "核心特征": ["充要条件", "λ的唯一性", "a为非零向量"]}',
'{"必要性": "判断向量共线和表示共线向量的重要定理", "特殊说明": "λ是唯一的实数"}',
ARRAY['K6-2-3-01 向量的数乘运算', 'K6-1-1-08 共线向量'],
'{"包含的子知识点": [], "常见混淆": "充要条件的理解和应用", "教材位置": "必修第二册 第6章6.2.3节 P23"}',
'核心',
ARRAY['证明', '应用', '参数求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-4-01',
'三级',
'向量的夹角',
'概念/定义',
'{"定义": "已知两个非零向量a,bO是平面上的任意一点作OA→=a, OB→=b则∠AOB=θ0≤θ≤π叫做向量a与b的夹角", "关键要素": ["同起点", "角度范围", "非零向量"], "符号表示": "∠AOB或⟨a,b⟩"}',
'{"为什么定义夹角": "为定义向量数量积做准备,描述向量间的方向关系", "核心特征": ["夹角范围为0到π", "当θ=0时a与b同向", "当θ=π时a与b反向"]}',
'{"必要性": "向量数量积定义的基础", "特殊说明": "只适用于非零向量"}',
ARRAY['K6-1-1-01 平面向量的概念', 'K6-1-1-03 向量的几何表示'],
'{"包含的子知识点": ["K6-2-4-02 向量垂直"], "常见混淆": "向量夹角与直线夹角的区别", "教材位置": "必修第二册 第6章6.2.4节 P24-26"}',
'重要',
ARRAY['计算', '判断', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-4-02',
'三级',
'向量垂直',
'概念/定义',
'{"定义": "如果向量a与b的夹角是π/2我们说a与b垂直记作a⊥b", "关键要素": ["夹角为直角", "相互垂直"], "符号表示": "a⊥b"}',
'{"为什么引入垂直概念": "描述向量间的重要位置关系,是向量数量积的重要应用", "核心特征": ["夹角为90度", "是向量间特殊的方向关系", "在几何应用中非常重要"]}',
'{"必要性": "向量垂直判断和几何应用的基础", "特殊说明": "垂直是向量间的重要位置关系"}',
ARRAY['K6-2-4-01 向量的夹角'],
'{"包含的子知识点": [], "常见混淆": "向量垂直与直线垂直的关系", "教材位置": "必修第二册 第6章6.2.4节 P24"}',
'重要',
ARRAY['判断', '证明', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-4-03',
'二级',
'向量的数量积',
'概念/定义',
'{"定义": "已知两个非零向量a与b它们的夹角为θ我们把数量|a||b|cosθ叫做向量a与b的数量积或内积记作a·b即a·b=|a||b|cosθ", "关键要素": ["数量结果", "长度乘积", "夹角余弦"], "符号表示": "a·b"}',
'{"为什么这样定义": "从物理中功的概念抽象而来W=|F||s|cosθ反映两向量的投影关系", "核心特征": ["结果是数量(标量)", "与向量的长度和夹角有关", "反映向量的投影关系"]}',
'{"必要性": "向量运算体系的重要组成部分,有广泛的应用", "特殊说明": "规定零向量与任一向量的数量积为0"}',
ARRAY['K6-1-1-04 向量的长度(模)', 'K6-2-4-01 向量的夹角', '三角函数余弦'],
'{"包含的子知识点": ["K6-2-4-04 向量数量积的性质", "K6-2-4-05 向量数量积的运算律"], "常见混淆": "数量积与向量积的区别", "教材位置": "必修第二册 第6章6.2.4节 P24-28"}',
'核心',
ARRAY['计算', '性质应用', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-4-04',
'三级',
'向量数量积的性质',
'定理/性质',
'{"性质1": "a·e = e·a = |a|cosθe为单位向量", "性质2": "a⊥b ⇔ a·b = 0", "性质3": "当a与b同向时a·b = |a||b|当a与b反向时a·b = -|a||b|", "性质4": "a·a = |a|² 或 |a| = √(a·a)", "性质5": "|a·b| ≤ |a||b|"}',
'{"为什么这些性质成立": "由向量数量积的定义和几何意义推导得出", "核心特征": ["反映向量的投影关系", "提供了判断垂直的方法", "建立了向量长度与数量积的关系"]}',
'{"必要性": "向量数量积计算和应用的基础", "特殊说明": "这些性质在几何证明和计算中非常重要"}',
ARRAY['K6-2-4-03 向量的数量积', 'K6-1-1-06 单位向量'],
'{"包含的子知识点": [], "常见混淆": "各个性质的应用条件和范围", "教材位置": "必修第二册 第6章6.2.4节 P26-27"}',
'核心',
ARRAY['性质应用', '计算验证', '证明题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-4-05',
'三级',
'向量数量积的运算律',
'定理/性质',
'{"交换律": "a·b = b·a", "数乘结合律": "(λa)·b = λ(a·b) = a·(λb)", "分配律": "(a+b)·c = a·c + b·c"}',
'{"为什么成立": "可以通过向量投影或坐标运算验证,符合代数运算的基本性质", "核心特征": ["交换律:改变顺序结果不变", "数乘结合律:实数可以提取", "分配律:对向量加法的分配"]}',
'{"必要性": "向量数量积运算的基础,简化计算过程", "特殊说明": "注意与向量乘法的区别,数量积不满足结合律"}',
ARRAY['K6-2-4-03 向量的数量积', 'K6-2-3-01 向量的数乘运算'],
'{"包含的子知识点": [], "常见混淆": "数量积运算律与实数乘法运算律的异同", "教材位置": "必修第二册 第6章6.2.4节 P27-28"}',
'核心',
ARRAY['计算验证', '证明', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K6-2-4-06',
'三级',
'向量投影',
'概念/定义',
'{"定义": "向量a向向量b投影是指过向量a的起点和终点分别作向量b所在直线的垂线得到的新向量称为向量a在向量b上的投影向量", "投影向量公式": "设与b方向相同的单位向量为ea与b的夹角为θ则投影向量为|a|cosθ·e"}',
'{"为什么引入投影概念": "为理解向量数量积的几何意义,便于几何应用", "核心特征": ["投影向量与原向量b共线", "投影向量的长度为|a|cosθ", "方向由cosθ的符号决定"]}',
'{"必要性": "理解向量数量积几何意义的基础", "特殊说明": "投影是数量积几何意义的关键"}',
ARRAY['K6-2-4-01 向量的夹角', 'K6-1-1-06 单位向量', 'K6-2-4-03 向量的数量积'],
'{"包含的子知识点": [], "常见混淆": "投影向量与投影长度的区别", "教材位置": "必修第二册 第6章6.2.4节 P25-26"}',
'重要',
ARRAY['概念理解', '几何应用', '计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-1-01',
'二级',
'数系的扩充和复数的概念',
'概念/定义',
'{"定义": "我们把形如a+bi(a,b∈R)的数叫做复数其中i叫做虚数单位i²=-1", "关键要素": ["虚数单位i", "实部a", "虚部b"], "符号表示": "z=a+bi(a,b∈R)"}',
'{"为什么这样定义": "为解决实系数一元二次方程当判别式小于0时无实数根的问题通过引入虚数单位i扩充数系", "核心特征": ["复数集C={a+bi|a,b∈R}", "实数集R是复数集C的真子集", "任何一个复数由有序实数对(a,b)唯一确定"]}',
'{"必要性": "解决代数方程在实数范围内无解的问题", "特殊说明": "复数通常用字母z表示"}',
ARRAY['实数集', '一元二次方程', '数系扩充思想'],
'{"包含的子知识点": ["K7-1-1-02 复数的分类", "K7-1-1-03 复数相等"], "常见混淆": "复数与实数的区别虚数单位i与实数的区别", "教材位置": "必修第二册 第7章7.1.1节 P75-76"}',
'核心',
ARRAY['概念理解', '分类判断', '相等判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-1-02',
'三级',
'复数的分类',
'概念/定义',
'{"分类标准": "根据复数z=a+bi中a和b的取值进行分类", "实数": "当且仅当b=0时z=a+bi是实数", "虚数": "当b≠0时z=a+bi是虚数", "纯虚数": "当a=0且b≠0时z=bi是纯虚数"}',
'{"为什么这样分类": "明确复数与实数的关系,体现数系扩充的层次性", "核心特征": ["复数{实数(b=0), 虚数(b≠0)}", "纯虚数是虚数的特殊情况", "实数是复数的特殊情况"]}',
'{"必要性": "判断复数类型,理解复数集与实数集的关系", "特殊说明": "纯虚数必须是虚数且实部为0"}',
ARRAY['K7-1-1-01 数系的扩充和复数的概念'],
'{"包含的子知识点": [], "常见混淆": "虚数与纯虚数的区别0的特殊性", "教材位置": "必修第二册 第7章7.1.1节 P76"}',
'重要',
ARRAY['分类判断', '参数求解', '概念理解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-1-03',
'三级',
'复数相等',
'定理/性质',
'{"定义": "复数a+bi与c+di相等当且仅当a=c且b=d", "判定条件": "实部相等且虚部相等", "符号表示": "a+bi=c+di ⇔ a=c且b=d"}',
'{"为什么这样定义": "复数由有序实数对唯一确定,因此相等要求对应分量都相等", "核心特征": ["两个复数相等需要两个条件同时满足", "复数相等是复数运算的基础", "提供了复数方程求解的方法"]}',
'{"必要性": "复数运算、方程求解、参数确定的基础", "特殊说明": "适用于任意复数的相等判定"}',
ARRAY['K7-1-1-01 数系的扩充和复数的概念'],
'{"包含的子知识点": [], "常见混淆": "复数相等与实数相等的区别", "教材位置": "必修第二册 第7章7.1.1节 P76"}',
'核心',
ARRAY['相等判定', '方程求解', '参数确定']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-2-01',
'二级',
'复数的几何意义',
'概念/定义',
'{"复平面": "建立了直角坐标系来表示复数的平面x轴叫做实轴y轴叫做虚轴", "点对应": "复数z=a+bi与复平面内的点Z(a,b)一一对应", "向量对应": "复数z=a+bi与复平面内以原点为起点的向量OZ→一一对应"}',
'{"为什么这样建立": "复数z=a+bi由有序实数对(a,b)唯一确定,与平面直角坐标系中的点一一对应", "核心特征": ["复数集C与复平面内的点集建立一一对应", "复数与向量建立一一对应实数0对应零向量", "提供了复数的直观几何表示"]}',
'{"必要性": "理解复数的几何意义,为复数运算提供几何解释", "特殊说明": "常把复数z=a+bi说成点Z或向量OZ→"}',
ARRAY['K7-1-1-01 数系的扩充和复数的概念', '平面直角坐标系', '平面向量'],
'{"包含的子知识点": ["K7-1-2-02 复数的模", "K7-1-2-03 共轭复数"], "常见混淆": "复平面与普通坐标平面的区别", "教材位置": "必修第二册 第7章7.1.2节 P77-78"}',
'核心',
ARRAY['几何表示', '位置判断', '数形结合']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-2-02',
'三级',
'复数的模',
'概念/定义',
'{"定义": "向量OZ→的模叫做复数z=a+bi的模或绝对值记作|z|或|a+bi|", "计算公式": "|z|=|a+bi|=√(a²+b²)", "几何意义": "复数对应点到原点的距离"}',
'{"为什么这样定义": "复数与向量一一对应,向量的模表示长度,因此复数的模表示复数对应点到原点的距离", "核心特征": ["复数的模是一个非负实数", "当b=0时|a+bi|=|a|(实数的绝对值)", "模相等表示到原点距离相等"]}',
'{"必要性": "复数大小比较、几何应用、三角表示的基础", "特殊说明": "复数不能像实数那样直接比较大小,但可以比较模的大小"}',
ARRAY['K7-1-2-01 复数的几何意义', '平面向量的模'],
'{"包含的子知识点": [], "常见混淆": "复数模与实数绝对值的关系", "教材位置": "必修第二册 第7章7.1.2节 P78-79"}',
'核心',
ARRAY['计算', '几何应用', '不等式求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-1-2-03',
'三级',
'共轭复数',
'概念/定义',
'{"定义": "当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数", "表示方法": "复数z的共轭复数用z̄表示如果z=a+bi那么z̄=a-bi", "特殊情况": "虚部不等于0的两个共轭复数也叫做共轭虚数"}',
'{"为什么引入": "共轭复数在复数运算中具有重要性质,特别是在除法运算中", "核心特征": ["几何上关于实轴对称", "z与z̄的模相等|z|=|z̄|", "实数的共轭复数是它本身"]}',
'{"必要性": "复数运算、方程求解、几何应用的重要工具", "特殊说明": "共轭运算保持四则运算的某些性质"}',
ARRAY['K7-1-1-01 数系的扩充和复数的概念'],
'{"包含的子知识点": [], "常见混淆": "共轭与相反数的区别", "教材位置": "必修第二册 第7章7.1.2节 P79"}',
'重要',
ARRAY['计算', '性质应用', '几何理解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-1-01',
'二级',
'复数的加法运算',
'概念/定义',
'{"定义": "设z₁=a+biz₂=c+di(a,b,c,d∈R)则z₁+z₂=(a+c)+(b+d)i", "运算特点": "实部相加,虚部相加,类似于多项式相加", "特殊情况": "当z₁z₂都是实数时和就是这两个实数的和"}',
'{"为什么这样定义": "保持运算的协调性,使得实数作为复数时的运算与原实数运算一致", "核心特征": ["两个复数的和仍是一个复数", "满足交换律和结合律", "与向量加法具有相同的几何意义"]}',
'{"必要性": "复数四则运算的基础,满足数系扩充的运算要求", "特殊说明": "复数加法可以按照向量加法进行"}',
ARRAY['K7-1-1-01 数系的扩充和复数的概念', '多项式加法'],
'{"包含的子知识点": ["K7-2-1-02 复数加法的几何意义", "K7-2-1-03 复数的减法运算"], "常见混淆": "复数加法与向量加法的关系", "教材位置": "必修第二册 第7章7.2.1节 P82-83"}',
'核心',
ARRAY['计算', '几何应用', '运算律验证']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-1-02',
'三级',
'复数加法的几何意义',
'定理/性质',
'{"几何解释": "复数的加法可以按照向量的加法来进行,即平行四边形法则或三角形法则", "向量表示": "若OZ₁→对应z₁OZ₂→对应z₂则OZ₁→+OZ₂→对应z₁+z₂", "几何作图": "以OZ₁→和OZ₂→为邻边作平行四边形对角线向量即为和"}',
'{"为什么这样对应": "复数与向量一一对应,向量加法的几何意义自然适用于复数加法", "核心特征": ["保持向量加法的平行四边形法则", "体现了复数的几何本质", "便于几何直观理解复数运算"]}',
'{"必要性": "理解复数运算的几何意义,便于几何应用", "特殊说明": "零向量对应复数0"}',
ARRAY['K7-2-1-01 复数的加法运算', 'K7-1-2-01 复数的几何意义', '向量加法'],
'{"包含的子知识点": [], "常见混淆": "复数加法与实数加法的几何表示区别", "教材位置": "必修第二册 第7章7.2.1节 P82-83"}',
'重要',
ARRAY['几何作图', '向量应用', '数形结合']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-1-03',
'二级',
'复数的减法运算',
'概念/定义',
'{"定义": "复数的减法是加法的逆运算,(a+bi)-(c+di)=(a-c)+(b-d)i", "运算特点": "实部相减,虚部相减,类似于多项式相减", "结果性质": "两个复数的差是一个确定的复数"}',
'{"为什么这样定义": "类比实数减法是加法的逆运算,保持数系运算的一致性", "核心特征": ["满足复数相等条件确定差", "保持运算的封闭性", "与实数减法协调一致"]}',
'{"必要性": "完善复数四则运算体系,满足实际计算需求", "特殊说明": "减法是加法的逆运算"}',
ARRAY['K7-2-1-01 复数的加法运算', '实数减法'],
'{"包含的子知识点": ["K7-2-1-04 复数减法的几何意义", "复数距离公式"], "常见混淆": "复数减法与向量减法的关系", "教材位置": "必修第二册 第7章7.2.1节 P83"}',
'核心',
ARRAY['计算', '方程求解', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-1-04',
'三级',
'复数减法的几何意义',
'定理/性质',
'{"几何解释": "复数z₂-z₁对应向量Z₁Z₂→表示从点Z₁到点Z₂的向量", "距离公式": "两点Z₁(x₁,y₁)Z₂(x₂,y₂)之间的距离为|Z₁Z₂→|=|z₂-z₁|=√((x₂-x₁)²+(y₂-y₁)²)", "向量表示": "差向量指向被减数对应的点"}',
'{"为什么这样解释": "复数减法作为加法的逆运算,其几何意义对应向量减法", "核心特征": ["提供了复数距离的计算方法", "体现了复数的几何应用价值", "与平面几何距离公式一致"]}',
'{"必要性": "复数几何应用的基础,特别是距离和轨迹问题", "特殊说明": "距离等于复数差的模"}',
ARRAY['K7-2-1-03 复数的减法运算', '向量减法', '两点距离公式'],
'{"包含的子知识点": [], "常见混淆": "向量方向与减法顺序的关系", "教材位置": "必修第二册 第7章7.2.1节 P83-84"}',
'重要',
ARRAY['距离计算', '轨迹问题', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-2-01',
'二级',
'复数的乘法运算',
'概念/定义',
'{"定义": "(a+bi)(c+di)=(ac-bd)+(ad+bc)i其中i²=-1", "运算方法": "类似于多项式相乘将i²换成-1实虚部分别合并", "特殊情况": "当都是实数时,积就是这两个实数的积"}',
'{"为什么这样定义": "保持运算律和分配律,与实数乘法协调一致", "核心特征": ["两个复数的积是一个确定的复数", "满足交换律、结合律、分配律", "可以用乘法公式简化计算"]}',
'{"必要性": "复数四则运算的重要组成部分,满足代数运算需求", "特殊说明": "注意i²=-1的使用"}',
ARRAY['K7-1-1-01 数系的扩充和复数的概念', '多项式乘法'],
'{"包含的子知识点": ["K7-2-2-02 共轭复数的积", "K7-2-2-03 复数的除法运算"], "常见混淆": "i²的处理实虚部分合并", "教材位置": "必修第二册 第7章7.2.2节 P84-86"}',
'核心',
ARRAY['计算', '运算律应用', '公式运用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-2-02',
'三级',
'共轭复数的积',
'定理/性质',
'{"定理": "若z₁z₂是共轭复数则z₁z₂是一个实数", "特例": "(a+bi)(a-bi)=a²+b²", "应用": "用于复数除法的分母实数化"}',
'{"为什么成立": "通过直接计算可得,(a+bi)(a-bi)=a²+b²结果为实数", "核心特征": ["共轭复数乘积为非负实数", "等于复数模的平方", "提供了实数化的方法"]}',
'{"必要性": "复数除法运算的基础,复数模的重要性质", "特殊说明": "这是复数除法实数化的关键"}',
ARRAY['K7-2-2-01 复数的乘法运算', 'K7-1-2-03 共轭复数'],
'{"包含的子知识点": [], "常见混淆": "与一般复数乘积的区别", "教材位置": "必修第二册 第7章7.2.2节 P85"}',
'重要',
ARRAY['计算', '性质应用', '除法运算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-2-2-03',
'二级',
'复数的除法运算',
'概念/定义',
'{"定义": "复数除法是乘法的逆运算,(a+bi)÷(c+di)=(ac+bd)/(c²+d²) + (bc-ad)/(c²+d²)i", "计算方法": "分子分母同乘分母的共轭复数,使分母实数化", "计算步骤": "①写成分数形式 ②分子分母乘共轭复数 ③化简结果"}',
'{"为什么这样定义": "通过乘分母的共轭复数使分母变为实数,便于计算", "核心特征": ["除数不能为零", "结果是确定的复数", "利用共轭复数的性质实现实数化"]}',
'{"必要性": "完善复数四则运算,满足代数方程求解需求", "特殊说明": "关键步骤是分母实数化"}',
ARRAY['K7-2-2-01 复数的乘法运算', 'K7-2-2-02 共轭复数的积'],
'{"包含的子知识点": [], "常见混淆": "实数化的步骤,符号的处理", "教材位置": "必修第二册 第7章7.2.2节 P85-86"}',
'核心',
ARRAY['计算', '化简', '方程求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-3-1-01',
'二级',
'复数的三角表示式',
'概念/定义',
'{"定义": "复数z=a+bi=r(cosθ+isinθ)其中r是模θ是辐角", "模的计算": "r=√(a²+b²)", "辐角定义": "以x轴非负半轴为始边向量OZ→所在射线为终边的角", "转换关系": "a=rcosθb=rsinθ"}',
'{"为什么这样表示": "借助向量的模和方向两个要素表示复数,便于某些运算", "核心特征": ["三角形式突出几何特征", "辐角有无限多个值相差2π的整数倍", "辐角主值范围0≤argz<2π"]}',
'{"必要性": "复数乘方运算和几何应用的重要工具", "特殊说明": "非零复数有唯一的模和辐角主值"}',
ARRAY['K7-1-2-01 复数的几何意义', 'K7-1-2-02 复数的模', '三角函数'],
'{"包含的子知识点": ["K7-3-1-02 代数形式与三角形式的互化"], "常见混淆": "辐角与辐角主值的区别", "教材位置": "必修第二册 第7章7.3.1节 P90-92"}',
'重要',
ARRAY['形式互化', '计算', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K7-3-1-02',
'三级',
'代数形式与三角形式的互化',
'方法/技巧',
'{"代数→三角": "z=a+bi→r(cosθ+isinθ)其中r=√(a²+b²)cosθ=a/rsinθ=b/r", "三角→代数": "z=r(cosθ+isinθ)→a=rcosθb=rsinθ→z=a+bi", "关键步骤": "确定模r和一个辐角θ"}',
'{"为什么能互化": "两种形式表示同一个复数,由转换关系保证等价性", "核心特征": ["保持复数的唯一性", "根据运算需要选择合适形式", "非零复数两种形式一一对应"]}',
'{"必要性": "根据具体问题选择最简便的表示形式", "特殊说明": "三角形式中系数r必须为正"}',
ARRAY['K7-3-1-01 复数的三角表示式', '三角函数', '坐标转换'],
'{"包含的子知识点": [], "常见混淆": "三角形式的判定,辐角的确定", "教材位置": "必修第二册 第7章7.3.1节 P91-93"}',
'重要',
ARRAY['形式转换', '计算', '应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-1-01',
'二级',
'集合的含义',
'概念/定义',
'{"定义": "把一些元素组成的总体叫做集合", "关键要素": ["元素", "总体"], "符号表示": "用大写拉丁字母A, B, C...表示集合"}',
'{"为什么这样定义": "为了简洁、准确地表述数学对象及研究范围", "核心特征": ["确定性", "互异性", "无序性"]}',
'{"必要性": "集合中元素必须是确定的", "特殊说明": "集合中元素不重复出现"}',
NULL,
'{"包含的子知识点": ["K1-1-1-02", "K1-1-1-03", "K1-1-1-04"], "常见混淆": "集合与元素的层次关系", "教材位置": "必修1 第1章1.1节 P10"}',
'核心',
ARRAY['判断能否构成集合', '元素与集合关系的判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-1-02',
'三级',
'元素的定义',
'概念/定义',
'{"定义": "把研究对象统称为元素", "关键要素": ["研究对象"], "符号表示": "用小写拉丁字母a, b, c...表示元素"}',
'{"为什么这样定义": "元素是构成集合的基本单位", "核心特征": ["确定性", "互异性"]}',
'{"必要性": "元素必须能够明确识别", "特殊说明": "同一集合中元素不重复"}',
NULL,
'{"包含的子知识点": [], "常见混淆": "属于关系与包含关系的区别", "教材位置": "必修1 第1章1.1节 P10"}',
'基础',
ARRAY['元素与集合关系的判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-1-03',
'三级',
'属于关系',
'概念/定义',
'{"定义": "如果a是集合A的元素就说a属于集合A", "关键要素": ["元素a", "集合A"], "符号表示": "a ∈ A"}',
'{"为什么这样定义": "表示元素与集合的归属关系", "核心特征": ["归属性", "二元关系"]}',
'{"必要性": "a必须是确定的元素A必须是确定的集合", "特殊说明": "属于关系是元素与集合的关系"}',
ARRAY['K1-1-1-01', 'K1-1-1-02'],
'{"包含的子知识点": [], "常见混淆": "a ∈ A 与 {a} ⊆ A 的区别", "教材位置": "必修1 第1章1.1节 P10"}',
'核心',
ARRAY['判断元素与集合的归属关系']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-1-04',
'三级',
'不属于关系',
'概念/定义',
'{"定义": "如果a不是集合A的元素就说a不属于集合A", "关键要素": ["元素a", "集合A"], "符号表示": "a ∉ A"}',
'{"为什么这样定义": "表示元素与集合的非归属关系", "核心特征": ["排他性", "二元关系"]}',
'{"必要性": "a必须是确定的元素A必须是确定的集合", "特殊说明": "不属于关系也是元素与集合的关系"}',
ARRAY['K1-1-1-01', 'K1-1-1-02', 'K1-1-1-03'],
'{"包含的子知识点": [], "常见混淆": "a ∉ A 与 a ⊈ A 的区别", "教材位置": "必修1 第1章1.1节 P10"}',
'核心',
ARRAY['判断元素与集合的非归属关系']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-1-05',
'三级',
'常用数集的表示',
'概念/定义',
'{"定义": "数学中常用的数集及其专用符号", "关键要素": ["数集", "专用符号"], "符号表示": "N, N*, Z, Q, R"}',
'{"为什么这样定义": "便于数学表达和交流", "核心特征": ["标准化", "专用性"]}',
'{"必要性": "在不同数学问题中明确数的范围", "特殊说明": "N*和N+都表示正整数集"}',
NULL,
'{"包含的子知识点": [], "常见混淆": "N与N*的区别Q与R的区别", "教材位置": "必修1 第1章1.1节 P11-12"}',
'核心',
ARRAY['识别常用数集的符号', '判断数与数集的关系']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-1-06',
'二级',
'列举法',
'概念/定义',
'{"定义": "把集合的所有元素一一列举出来,并用花括号括起来的方法", "关键要素": ["元素逐一列出", "花括号括起来"], "符号表示": "{a, b, c, ...}"}',
'{"为什么这样定义": "适用于有限集合或元素较少的无限集合", "核心特征": ["直观性", "明确性"]}',
'{"必要性": "集合中的元素能够全部列举出来", "特殊说明": "元素顺序不影响集合相等"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "列举法与描述法的应用场景", "教材位置": "必修1 第1章1.1节 P13"}',
'重要',
ARRAY['用列举法表示集合', '识别列举法表示的集合']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-1-07',
'二级',
'描述法',
'概念/定义',
'{"定义": "用集合中元素的共同特征表示集合的方法", "关键要素": ["元素的共同特征", "描述性语言"], "符号表示": "{x ∈ A | P(x)}"}',
'{"为什么这样定义": "适用于无限集合或元素较多的集合", "核心特征": ["描述性", "概括性"]}',
'{"必要性": "集合中元素具有共同特征", "特殊说明": "也可以用冒号或分号代替竖线"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "竖线前后含义的理解", "教材位置": "必修1 第1章1.1节 P14-16"}',
'重要',
ARRAY['用描述法表示集合', '将描述法转换为列举法']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-2-01',
'二级',
'子集的定义',
'概念/定义',
'{"定义": "如果集合A中任意一个元素都是集合B中的元素就称集合A为集合B的子集", "关键要素": ["任意元素", "包含关系"], "符号表示": "A ⊆ B (或 B ⊇ A)"}',
'{"为什么这样定义": "描述集合间的包含关系", "核心特征": ["传递性", "包含性"]}',
'{"必要性": "A中的每个元素都在B中", "特殊说明": "任何一个集合都是它本身的子集"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": ["K1-1-2-02", "K1-1-2-03"], "常见混淆": "子集与真子集的区别", "教材位置": "必修1 第1章1.2节 P18-19"}',
'核心',
ARRAY['判断子集关系', 'Venn图表示']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-2-02',
'三级',
'真子集的定义',
'概念/定义',
'{"定义": "如果集合A ⊆ B但存在元素x ∈ B且x ∉ A就称集合A是集合B的真子集", "关键要素": ["真包含", "存在差异元素"], "符号表示": "A ⊂neq B (或 B ⊃neq A)"}',
'{"为什么这样定义": "描述严格包含关系", "核心特征": ["严格性", "差异性"]}',
'{"必要性": "A是B的子集且A≠B", "特殊说明": "真子集关系是严格的包含关系"}',
ARRAY['K1-1-2-01'],
'{"包含的子知识点": [], "常见混淆": "子集与真子集的区别", "教材位置": "必修1 第1章1.2节 P20"}',
'重要',
ARRAY['判断真子集关系', '子集个数的计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-2-03',
'三级',
'集合相等的定义',
'概念/定义',
'{"定义": "如果集合A的任何一个元素都是集合B的元素同时集合B的任何一个元素都是集合A的元素那么集合A与集合B相等", "关键要素": ["相互包含", "元素相同"], "符号表示": "A = B"}',
'{"为什么这样定义": "描述集合的同一性", "核心特征": ["双向性", "等价性"]}',
'{"必要性": "A ⊆ B 且 B ⊆ A", "特殊说明": "构成元素相同的两个集合相等"}',
ARRAY['K1-1-2-01'],
'{"包含的子知识点": [], "常见混淆": "集合相等与元素顺序无关", "教材位置": "必修1 第1章1.2节 P19"}',
'核心',
ARRAY['判断集合相等', '集合相等的证明']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-2-04',
'三级',
'空集的定义',
'概念/定义',
'{"定义": "不含任何元素的集合叫做空集", "关键要素": ["不含元素", "特殊集合"], "符号表示": "∅"}',
'{"为什么这样定义": "描述不含任何元素的集合", "核心特征": ["唯一性", "特殊性"]}',
'{"必要性": "集合中确实没有任何元素", "特殊说明": "空集是任何集合的子集"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "空集与{0}的区别", "教材位置": "必修1 第1章1.2节 P20"}',
'重要',
ARRAY['识别空集', '空集作为子集的应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-3-01',
'二级',
'并集的定义',
'概念/定义',
'{"定义": "由所有属于集合A或属于集合B的元素组成的集合称为集合A与B的并集", "关键要素": ["属于A或属于B", "元素合并"], "符号表示": "A B = {x|x ∈ A, 或 x ∈ B}"}',
'{"为什么这样定义": "合并两个集合的所有元素", "核心特征": ["并合性", "无重复性"]}',
'{"必要性": "需要合并两个集合", "特殊说明": "公共元素在并集中只出现一次"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "并集与集合的合并", "教材位置": "必修1 第1章1.3节 P27"}',
'核心',
ARRAY['求两个集合的并集', '并集的性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-3-02',
'二级',
'交集的定义',
'概念/定义',
'{"定义": "由所有属于集合A且属于集合B的元素组成的集合称为集合A与B的交集", "关键要素": ["属于A且属于B", "公共部分"], "符号表示": "A ∩ B = {x|x ∈ A, 且 x ∈ B}"}',
'{"为什么这样定义": "找出两个集合的公共元素", "核心特征": ["公共性", "双重性"]}',
'{"必要性": "需要找出两个集合的公共元素", "特殊说明": "交集可能为空集"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": [], "常见混淆": "交集与并集的区别", "教材位置": "必修1 第1章1.3节 P30"}',
'核心',
ARRAY['求两个集合的交集', '交集的性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-3-03',
'二级',
'全集的定义',
'概念/定义',
'{"定义": "如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集", "关键要素": ["包含所有元素", "研究范围"], "符号表示": "U"}',
'{"为什么这样定义": "确定研究问题的范围", "核心特征": ["完备性", "范围性"]}',
'{"必要性": "需要明确研究范围", "特殊说明": "全集是相对的"}',
ARRAY['K1-1-1-01'],
'{"包含的子知识点": ["K1-1-3-04"], "常见混淆": "全集与绝对全集的区别", "教材位置": "必修1 第1章1.3节 P32"}',
'重要',
ARRAY['确定全集的范围', '全集在补集运算中的应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-3-04',
'二级',
'补集的定义',
'概念/定义',
'{"定义": "对于一个集合A由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集", "关键要素": ["全集中不属于A", "相对概念"], "符号表示": "CᵤA = {x|x ∈ U, 且 x ∉ A}"}',
'{"为什么这样定义": "描述集合的补足部分", "核心特征": ["相对性", "互补性"]}',
'{"必要性": "需要明确全集U", "特殊说明": "补集是相对于全集的概念"}',
ARRAY['K1-1-1-01', 'K1-1-3-03'],
'{"包含的子知识点": [], "常见混淆": "补集与余集的区别", "教材位置": "必修1 第1章1.3节 P33"}',
'重要',
ARRAY['求集合的补集', '补集的性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-4-01',
'二级',
'命题的定义',
'概念/定义',
'{"定义": "用语言、符号或式子表达的,可以判断真假的陈述句叫做命题", "关键要素": ["陈述句", "可判断真假"], "符号表示": ""}',
'{"为什么这样定义": "逻辑推理的基础", "核心特征": ["可判断性", "真值性"]}',
'{"必要性": "必须是陈述句", "特殊说明": "疑问句、祈使句不是命题"}',
NULL,
'{"包含的子知识点": ["K1-1-4-02", "K1-1-4-03"], "常见混淆": "命题与一般陈述句的区别", "教材位置": "必修1 第1章1.4节 P42"}',
'基础',
ARRAY['判断语句是否为命题', '命题真假的判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-4-02',
'三级',
'充分条件的定义',
'概念/定义',
'{"定义": "如果''若p则q''为真命题则称p是q的充分条件", "关键要素": ["p ⇒ q", "条件充分保证结论"], "符号表示": "p ⇒ q"}',
'{"为什么这样定义": "描述条件对结论的充分性", "核心特征": ["推出性", "充分性"]}',
'{"必要性": "由p能推出q", "特殊说明": "充分条件不唯一"}',
ARRAY['K1-1-4-01'],
'{"包含的子知识点": [], "常见混淆": "充分条件与必要条件的区别", "教材位置": "必修1 第1章1.4节 P43"}',
'核心',
ARRAY['判断充分条件关系', '充分条件的应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-4-03',
'三级',
'必要条件的定义',
'概念/定义',
'{"定义": "如果''若p则q''为真命题则称q是p的必要条件", "关键要素": ["p ⇒ q", "结论对条件的必要性"], "符号表示": "p ⇒ q"}',
'{"为什么这样定义": "描述结论对条件的必要性", "核心特征": ["必要性", "基础性"]}',
'{"必要性": "q不成立时p一定不成立", "特殊说明": "必要条件可能不充分"}',
ARRAY['K1-1-4-01', 'K1-1-4-02'],
'{"包含的子知识点": [], "常见混淆": "必要条件与充分条件的区别", "教材位置": "必修1 第1章1.4节 P43"}',
'核心',
ARRAY['判断必要条件关系', '必要条件的应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-4-04',
'二级',
'充要条件的定义',
'概念/定义',
'{"定义": "如果p既是q的充分条件又是q的必要条件那么p是q的充要条件", "关键要素": ["p ⇔ q", "相互推出"], "符号表示": "p ⇔ q"}',
'{"为什么这样定义": "描述条件的充分必要性", "核心特征": ["等价性", "相互性"]}',
'{"必要性": "p ⇒ q 且 q ⇒ p", "特殊说明": "充要条件具有等价性"}',
ARRAY['K1-1-4-02', 'K1-1-4-03'],
'{"包含的子知识点": [], "常见混淆": "充要条件与充分条件的区别", "教材位置": "必修1 第1章1.4.2节 P52"}',
'核心',
ARRAY['判断充要条件关系', '充要条件的证明']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-5-01',
'二级',
'全称量词的定义',
'概念/定义',
'{"定义": "短语''所有的'''''''''", "": ["", ""], "": ""}',
'{"": "", "": ["", ""]}',
'{"": "", "": "'''''''''每一个'''''''''"}',
ARRAY['K1-1-4-01'],
'{"": ["K1-1-5-02"], "": "", "": "1 11.5.1 P62"}',
'重要',
ARRAY['识别全称量词', '全称量词命题的表述']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-5-02',
'三级',
'全称量词命题的定义',
'概念/定义',
'{"": "", "": ["", ""], "": "x M, p(x)"}',
'{"": "", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K1-1-4-01', 'K1-1-5-01'],
'{"": [], "": "", "": "1 11.5.1 P62"}',
'重要',
ARRAY['识别全称量词命题', '全称量词命题真假的判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-5-03',
'二级',
'存在量词的定义',
'概念/定义',
'{"": "'''''''''至少有一个''在逻辑中叫做存在量词", "关键要素": ["存在", "至少一个"], "符号表示": "∃"}',
'{"为什么这样定义": "表示集合中至少存在一个元素", "核心特征": ["存在性", "部分性"]}',
'{"必要性": "需要描述集合中存在元素", "特殊说明": "常见的存在量词还有''有些''''''''''''''对某些'''''''''"}',
ARRAY['K1-1-4-01'],
'{"": ["K1-1-5-04"], "": "", "": "1 11.5.1 P66"}',
'重要',
ARRAY['识别存在量词', '存在量词命题的表述']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-5-04',
'三级',
'存在量词命题的定义',
'概念/定义',
'{"": "", "": ["", ""], "": "x M, p(x)"}',
'{"": "", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K1-1-4-01', 'K1-1-5-03'],
'{"": [], "": "", "": "1 11.5.1 P66"}',
'重要',
ARRAY['识别存在量词命题', '存在量词命题真假的判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-5-05',
'二级',
'全称量词命题的否定',
'定理/性质',
'{"": "x M, p(x)x M, ¬p(x)", "": ["", ""], "": "¬(x M, p(x)) x M, ¬p(x)"}',
'{"": "", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K1-1-5-02'],
'{"": [], "": "", "": "1 11.5.2 P73"}',
'核心',
ARRAY['写出全称量词命题的否定', '判断否命题的真假']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-5-06',
'二级',
'存在量词命题的否定',
'定理/性质',
'{"": "x M, p(x)x M, ¬p(x)", "": ["", ""], "": "¬(x M, p(x)) x M, ¬p(x)"}',
'{"": "", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K1-1-5-04'],
'{"": [], "": "", "": "1 11.5.2 P75"}',
'核心',
ARRAY['写出存在量词命题的否定', '判断否命题的真假']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K1-1-3-05',
'三级',
'有限集合元素个数的计算公式',
'公式',
'{"": "A, Bcard(A B) = card(A) + card(B) - card(A B)", "": ["", ""], "": "card(A B) = card(A) + card(B) - card(A B)"}',
'{"": "", "": ["", ""]}',
'{"": "A, B都是有限集合", "": "card表示集合中元素的个数"}',
ARRAY['K1-1-3-01', 'K1-1-3-02'],
'{"": [], "": "card(A B)card(A) + card(B)", "": "1 1 P38-40"}',
'重要',
ARRAY['计算集合元素个数', '容斥原理的应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-1-1-01',
'二级',
'n次方根',
'概念/定义',
'{"": "n次方等于a(n>1nN+)a的n次方根", "": ["n次方等于a", "n>1", "n为正整数"], "": "xⁿ = ax是a的n次方根"}',
'{"": "广", "": ["n次方根n次方根", "0n次方根只有一个0", ""]}',
'{"": "广", "": ""}',
ARRAY['K1-1-1-01', 'K2-1-1-01'],
'{"": ["K4-1-1-02"], "": "n次方根与平方根的关系", "": "1 44.1 P111-112"}',
'重要',
ARRAY['n次方根计算', '存在性判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-1-1-02',
'三级',
'根式',
'概念/定义',
'{"": "n次方根的式子叫做根式n叫做根指数a叫做被开方数", "": ["n次方根的表示", "", ""], "": "a (a叫做被开方数n叫做根指数)"}',
'{"": "n次方根便", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K4-1-1-01'],
'{"": [], "": "", "": "1 44.1 P113"}',
'重要',
ARRAY['根式化简', '根式运算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-1-1-03',
'三级',
'分数指数幂',
'概念/定义',
'{"": "a^(m/n) = (a^m) (a>0, m, nN+, n>1)", "": ["", "", "a>0"], "": "a^(m/n) = (a^m), a^(-m/n) = 1/a^(m/n)"}',
'{"": "便", "": ["", ""]}',
'{"": "广", "": ""}',
ARRAY['K4-1-1-01', 'K4-1-1-02'],
'{"": [], "": "", "": "1 44.1 P114-115"}',
'核心',
ARRAY['分数指数幂化简', '分数指数幂运算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-1-2-01',
'三级',
'无理数指数幂',
'概念/定义',
'{"": "a>0a^α(α)", "": ["", "a>0", ""], "": "a^α (a>0, α)"}',
'{"": "", "": ["", "广"]}',
'{"": "", "": ""}',
ARRAY['K4-1-1-03'],
'{"": [], "": "", "": "1 44.1 P116"}',
'重要',
ARRAY['无理数指数幂理解', '指数运算性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-2-1-01',
'二级',
'指数函数',
'概念/定义',
'{"": "y = a^x(a>0, a1)x是自变量R", "": ["a", "x", "a>0a1"], "": "y = a^x (a>0, a1, xR)"}',
'{"": "", "": ["a必须大于0且不等于1", "R"]}',
'{"": "", "": "a的取值范围由无理数指数幂的定义决定"}',
ARRAY['K4-1-2-01', 'K3-1-1-01'],
'{"": ["K4-2-2-01"], "": "", "": "1 44.2 P117-118"}',
'核心',
ARRAY['指数函数识别', '指数函数基本性质']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-2-2-01',
'三级',
'指数函数的图象和性质',
'定理/性质',
'{"": "y = a^x的图象特征和函数性质", "": ["", "", ""], "": "y = a^x (a>1)y = a^x (0<a<1)"}',
'{"": "", "": ["(0,1)(0,1)", "a>10<a<1", "(0,+)"]}',
'{"": "", "": "a决定"}',
ARRAY['K4-2-1-01'],
'{"": [], "": "", "": "1 44.2 P119-121"}',
'核心',
ARRAY['图象分析', '性质应用', '比较大小']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-3-1-01',
'二级',
'对数',
'概念/定义',
'{"": "a^x = N(a>0, a1)x叫做以a为底N的对数x = log_a N", "": ["a^x = N", "x = log_a N", "a>0a1"], "": "x = log_a N (a>0, a1, N>0)"}',
'{"": "便", "": ["", "a>0a1N>0"]}',
'{"": "", "": ""}',
ARRAY['K4-2-1-01'],
'{"": ["K4-3-1-02", "K4-3-2-01"], "": "", "": "1 44.3 P126-128"}',
'核心',
ARRAY['对数定义理解', '指数与对数互化']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-3-1-02',
'三级',
'常用对数与自然对数',
'概念/定义',
'{"": "10e为底的对数", "": ["lg", "ln", ""], "": "lg N10ln Ne2.718"}',
'{"": "广", "": ["便", ""]}',
'{"": "", "": "e是自然常数"}',
ARRAY['K4-3-1-01'],
'{"": [], "": "", "": "1 44.3 P129"}',
'重要',
ARRAY['常用对数计算', '自然对数应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-3-2-01',
'三级',
'对数的运算性质',
'定理/性质',
'{"": "", "": ["", "", ""], "": "log_a(MN) = log_a M + log_a Nlog_a(M/N) = log_a M - log_a Nlog_a M^n = n log_a M"}',
'{"": "", "": ["", "M>0, N>0"]}',
'{"": "", "": ""}',
ARRAY['K4-3-1-01'],
'{"": [], "": "", "": "1 44.3 P130-132"}',
'核心',
ARRAY['对数运算性质应用', '对数化简']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-3-2-02',
'三级',
'对数换底公式',
'公式',
'{"": "", "": ["", ""], "": "log_a b = (log_c b)/(log_c a) (a>0, a1, b>0, c>0, c1)"}',
'{"": "便", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K4-3-2-01'],
'{"": [], "": "", "": "1 44.3 P133"}',
'重要',
ARRAY['换底公式应用', '不同底数对数换算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-4-1-01',
'二级',
'对数函数',
'概念/定义',
'{"": "y = log_a x(a>0, a1)x是自变量(0,+)", "": ["", "a", "(0,+)"], "": "y = log_a x (a>0, a1, x>0)"}',
'{"": "", "": ["", ""]}',
'{"": "", "": "a的限制条件与指数函数相同"}',
ARRAY['K4-3-1-01', 'K3-1-1-01'],
'{"": ["K4-4-2-01", "K4-4-3-01"], "": "", "": "1 44.4 P134-136"}',
'核心',
ARRAY['对数函数识别', '基本性质理解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-4-2-01',
'三级',
'对数函数的图象和性质',
'定理/性质',
'{"": "y = log_a x的图象特征和函数性质", "": ["", "", ""], "": "y = log_a x (a>1)y = log_a x (0<a<1)"}',
'{"": "便", "": ["(1,0)(1,0)", "a>10<a<1", "(0,+)R"]}',
'{"": "", "": "y轴右侧"}',
ARRAY['K4-4-1-01'],
'{"": [], "": "", "": "1 44.4 P137-140"}',
'核心',
ARRAY['图象分析', '性质应用', '比较大小']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-4-3-01',
'三级',
'反函数的概念',
'概念/定义',
'{"": "y = f(x)ACC中的任意一个值yA中都有唯一确定的值x与它对应x是y的函数y = f(x)", "": ["", "", ""], "": "y = f¹(x) (f(x))"}',
'{"": "", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K3-1-1-01'],
'{"": ["K4-4-3-02"], "": "", "": "1 44.4 P141-143"}',
'重要',
ARRAY['反函数求解', '反函数性质应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-4-3-02',
'三级',
'指数函数与对数函数的反函数关系',
'定理/性质',
'{"": "y = a^x与对数函数y = log_a x互为反函数", "": ["", "", ""], "": "y = a^x y = log_a x"}',
'{"": "", "": ["线y = x对称", ""]}',
'{"": "", "": "a必须相同"}',
ARRAY['K4-2-1-01', 'K4-4-1-01', 'K4-4-3-01'],
'{"": [], "": "", "": "1 44.4 P144"}',
'重要',
ARRAY['反函数关系应用', '性质对比']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-4-3-03',
'三级',
'不同函数增长的差异',
'概念/比较',
'{"": "", "": ["", "", ""], "": "x+a^x > x^n > log_a x (a>1, n>0)"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": "x趋近于正无穷时的长期趋势"}',
ARRAY['K4-2-2-01', 'K4-4-2-01', 'K3-3-2-01'],
'{"": [], "": "", "": "1 44.4 P145-147"}',
'重要',
ARRAY['函数增长比较', '模型选择']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-5-1-01',
'二级',
'函数的零点',
'概念/定义',
'{"": "y = f(x)使f(x) = 0x叫做函数y = f(x)", "": ["f(x) = 0", "", "x轴交点"], "": "xf(x) f(x) = 0"}',
'{"": "", "": ["", "x轴的交点"]}',
'{"": "", "": "0"}',
ARRAY['K3-1-1-01', 'K2-1-3-02'],
'{"": ["K4-5-1-02", "K4-5-2-01"], "": "", "": "1 44.5 P150-151"}',
'重要',
ARRAY['零点求解', '零点与方程解的关系']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-5-1-02',
'三级',
'函数零点存在定理',
'定理/性质',
'{"": "y = f(x)[a,b]线f(a)·f(b) < 0y = f(x)(a,b)", "": ["", "", ""], "": "f(a)·f(b) < 0 x(a,b), f(x) = 0"}',
'{"": "", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K4-5-1-01'],
'{"": [], "": "", "": "1 44.5 P152"}',
'重要',
ARRAY['零点存在性判断', '定理条件验证']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-5-2-01',
'三级',
'二分法',
'方法/算法',
'{"": "[a,b]f(a)·f(b) < 0y = f(x)使", "": ["", "", ""], "": "[aₙ, bₙ]"}',
'{"": "", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K4-5-1-02'],
'{"": ["K4-5-2-02"], "": "", "": "1 44.5 P153-154"}',
'重要',
ARRAY['二分法步骤', '近似解计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-5-2-02',
'三级',
'用二分法求方程近似解的步骤',
'方法/步骤',
'{"": "", "": ["", "", "", ""], "": ""}',
'{"": "", "": ["", ""]}',
'{"": "使", "": ""}',
ARRAY['K4-5-2-01'],
'{"": [], "": "", "": "1 44.5 P155"}',
'重要',
ARRAY['二分法应用', '步骤执行']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K4-5-3-01',
'三级',
'函数模型的应用',
'概念/应用',
'{"": "", "": ["", "", ""], "": " "}',
'{"": "", "": ["", ""]}',
'{"": "", "": ""}',
ARRAY['K3-4-1-01', 'K4-2-1-01', 'K4-4-1-01'],
'{"": [], "": "", "": "1 44.5 P156-158"}',
'重要',
ARRAY['建模问题', '实际应用题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-1-01',
'三级',
'直线的倾斜角',
'概念/定义',
'{"": "线$l$与$x$轴相交时$x$轴为基准$x$轴正向与直线$l$向上的方向之间所成的角$\\alpha$叫做直线的倾斜角", "": "$0^\\circ \\le \\alpha < 180^\\circ$"}',
'{"": "线", "": ["", "线", "线"]}',
'{"": "线", "": "线$0^\\circ$"}',
NULL,
'{"": ["K2-1-1-02 线"], "": ["", ""], "": "22.1.1 P56"}',
'核心',
ARRAY['倾斜角理解', '方向分析', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-1-02',
'三级',
'直线的斜率',
'概念/定义',
'{"": "线$\\alpha$的正切值叫做这条直线的斜率", "": "$k$", "": "$k = \\tan \\alpha$"}',
'{"": "线", "": ["", "$\\alpha=90^\\circ$时斜率不存在", "线"]}',
'{"": "线", "": "$x$轴的直线无斜率"}',
ARRAY['K2-1-1-01 直线的倾斜角'],
'{"": [], "": ["", "", ""], "": "22.1.1 P57"}',
'核心',
ARRAY['斜率计算', '倾斜角求取', '位置关系判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-1-03',
'三级',
'斜率公式',
'公式',
'{"": "$k = \\frac{y_2 - y_1}{x_2 - x_1}$", "": "$x_1 \\neq x_2$", "": "线"}',
'{"": "", "": ["便", "", ""]}',
'{"": "", "": "$x_1 = x_2$时公式不适用"}',
ARRAY['K2-1-1-01 直线的倾斜角', 'K2-1-1-02 直线的斜率', 'K2-1-1-04 两点间距离公式'],
'{"": [], "": ["", "", ""], "": "22.1.1 P58"}',
'核心',
ARRAY['斜率计算', '几何应用', '代数运算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-1-04',
'三级',
'两点间距离公式',
'公式',
'{"": "$|P_1P_2| = \\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$", "": "$|OP| = \\sqrt{x^2+y^2}$ (P的距离)"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['勾股定理', '坐标表示点'],
'{"": [], "": ["", "", ""], "": "22.3.2 P77"}',
'核心',
ARRAY['距离计算', '几何证明', '应用题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-2-01',
'三级',
'两条直线平行的判定',
'定理/性质',
'{"": "$k_1, k_2$的两条直线$l_1, l_2$$l_1 // l_2 \\Leftrightarrow k_1=k_2$", "": "线"}',
'{"": "线", "": ["", "", ""]}',
'{"": "线", "": "线"}',
ARRAY['K2-1-1-02 直线的斜率'],
'{"": [], "": ["", "", ""], "": "22.1.2 P60"}',
'核心',
ARRAY['平行判断', '几何证明', '代数推理']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-1-2-02',
'三级',
'两条直线垂直的判定',
'定理/性质',
'{"": "线-1$l_1 \\perp l_2 \\Leftrightarrow k_1 k_2 = -1$", "": "线"}',
'{"": "", "": ["", "", "-1"]}',
'{"": "", "": "线"}',
ARRAY['K2-1-1-02 直线的斜率', '向量数量积'],
'{"": [], "": ["", "", ""], "": "22.1.2 P61"}',
'核心',
ARRAY['垂直判断', '几何证明', '代数运算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-2-1-01',
'三级',
'直线的点斜式方程',
'公式',
'{"": "$y-y_0 = k(x-x_0)$", "": "$P_0(x_0, y_0)$$k$"}',
'{"": "", "": ["线", "线", ""]}',
'{"": "线", "": "$90^\\circ$时不能用"}',
ARRAY['K2-1-1-02 直线的斜率', 'K2-1-1-04 两点间距离公式'],
'{"": ["K2-2-1-02 线"], "": ["线", ""], "": "22.2.1 P64"}',
'核心',
ARRAY['方程建立', '几何应用', '代数运算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-2-1-02',
'三级',
'直线的斜截式方程',
'公式',
'{"": "$y = kx + b$", "": "$k$和$y$轴截距$b$"}',
'{"": "$P_0$在$y$轴上", "": ["", "", ""]}',
'{"": "线", "": "$90^\\circ$时不能用"}',
ARRAY['K2-2-1-01 直线的点斜式方程'],
'{"": [], "": ["线", "", ""], "": "22.2.1 P66"}',
'重要',
ARRAY['方程应用', '图像分析', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-2-2-01',
'三级',
'直线的两点式方程',
'公式',
'{"": "$\\frac{y-y_1}{y_2-y_1} = \\frac{x-x_1}{x_2-x_1}$", "": "$x_1 \\neq x_2$, $y_1 \\neq y_2$"}',
'{"": "", "": ["使", "", "广"]}',
'{"": "", "": ""}',
ARRAY['K2-1-1-03 斜率公式', 'K2-2-1-01 点斜式方程'],
'{"": ["K2-2-2-02 线"], "": ["线", "", ""], "": "22.2.2 P67"}',
'重要',
ARRAY['方程建立', '几何应用', '坐标变换']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-2-2-02',
'三级',
'直线的截距式方程',
'公式',
'{"": "$\\frac{x}{a} + \\frac{y}{b} = 1$", "": "$x$轴截距$a$和$y$轴截距$b$"}',
'{"": "", "": ["", "便", ""]}',
'{"": "线", "": "$a \\neq 0, b \\neq 0$"}',
ARRAY['K2-2-2-01 直线的两点式方程'],
'{"": [], "": ["", "", ""], "": "22.2.2 P69"}',
'基础',
ARRAY['方程应用', '几何分析', '图形绘制']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-2-3-01',
'三级',
'直线的一般式方程',
'公式',
'{"": "$Ax + By + C = 0$", "": "$A, B$不同时为0"}',
'{"": "线", "": ["", "", "便"]}',
'{"": "", "": "线"}',
ARRAY['各种直线方程形式', '代数运算'],
'{"": [], "": ["", "", ""], "": "22.2.3 P70"}',
'重要',
ARRAY['方程转换', '代数运算', '理论证明']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-3-1-01',
'三级',
'两条直线的交点坐标',
'公式/方法',
'{"": "线", "": "1.2.3."}',
'{"": "线", "": ["", "", "线"]}',
'{"": "线", "": ""}',
ARRAY['直线的一般式方程', '线性方程组解法'],
'{"": ["K2-3-1-02 线"], "": ["", ""], "": "22.3.1 P75"}',
'核心',
ARRAY['交点计算', '几何应用', '代数推理']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-3-2-01',
'三级',
'点到直线的距离公式',
'公式',
'{"": "$d = \\frac{|Ax_0 + By_0 + C|}{\\sqrt{A^2 + B^2}}$", "": "$P(x_0, y_0)$线$Ax + By + C = 0$"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": "线"}',
ARRAY['点到直线距离的定义', '向量投影', '向量模长'],
'{"": ["K2-3-3-01 线"], "": ["", "", ""], "": "22.3.3 P79"}',
'核心',
ARRAY['距离计算', '几何证明', '应用题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-3-3-01',
'三级',
'两条平行直线间的距离',
'公式',
'{"": "$d = \\frac{|C_1 - C_2|}{\\sqrt{A^2 + B^2}}$", "": "线$Ax + By + C_1 = 0$$Ax + By + C_2 = 0$"}',
'{"": "线", "": ["便", "", "线"]}',
'{"": "线", "": "线"}',
ARRAY['K2-3-2-01 点到直线的距离公式'],
'{"": [], "": ["", "", ""], "": "22.3.4 P83"}',
'重要',
ARRAY['距离计算', '几何应用', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-4-1-01',
'三级',
'圆的标准方程',
'公式',
'{"": "$(x-a)^2 + (y-b)^2 = r^2$", "": "$C(a, b)$$r$"}',
'{"": "", "": ["", "", "便"]}',
'{"": "", "": ""}',
ARRAY['两点间距离公式', '圆的定义'],
'{"": ["K2-4-2-01 "], "": ["", ""], "": "22.4.1 P87"}',
'核心',
ARRAY['圆的方程建立', '几何应用', '轨迹问题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-4-2-01',
'三级',
'圆的一般方程',
'公式',
'{"": "$x^2 + y^2 + Dx + Ey + F = 0$", "": "$D^2 + E^2 - 4F > 0$"}',
'{"": "", "": ["", "", "便"]}',
'{"": "", "": "0"}',
ARRAY['圆的标准方程', '代数配方法'],
'{"": [], "": ["", "", ""], "": "22.4.2 P90"}',
'重要',
ARRAY['方程转换', '圆的性质研究', '代数推理']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-5-1-01',
'三级',
'直线与圆的位置关系',
'定理/性质',
'{"": "", "": "", "": ""}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": "线"}',
ARRAY['直线方程', '圆的方程'],
'{"": [], "": ["", ""], "": "22.5.1 P96"}',
'核心',
ARRAY['位置关系判断', '几何证明', '应用题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-5-2-01',
'三级',
'圆与圆的位置关系',
'定理/性质',
'{"": "", "": "", "": ""}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['圆的方程', '圆心距公式', '圆的半径'],
'{"": [], "": ["", ""], "": "22.5.2 P101"}',
'重要',
ARRAY['位置关系判断', '几何证明', '代数推理']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K2-5-1-02',
'三级',
'直线与圆相交的弦长公式',
'公式',
'{"": "$=2\\sqrt{r^2 - d^2}$", "": "$r$和圆心到直线的距离$d$"}',
'{"": "", "": ["", "便", ""]}',
'{"": "", "": "$d < r$"}',
ARRAY['垂径定理', '勾股定理', '点到直线距离'],
'{"": [], "": ["", "", ""], "": "22.5.1 P97"}',
'重要',
ARRAY['长度计算', '几何证明', '应用题']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-01',
'二级',
'椭圆的定义',
'概念/定义',
'{"": "F1, F2的距离的和等于常数(|F1F2|)", "": "F1, F2称为椭圆的焦点", "": ""}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": "|F1F2|"}',
ARRAY['平面直角坐标系', '距离公式'],
'{"": ["K3-1-1-02 ", "K3-1-1-03 "], "": ["", ""], "": "33.1.1 P36"}',
'核心',
ARRAY['概念理解', '轨迹判断', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-02',
'三级',
'椭圆的标准方程',
'公式',
'{"x轴上": "$\\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1 \\quad (a>b>0)$", "y轴上": "$\\frac{y^2}{a^2} + \\frac{x^2}{b^2} = 1 \\quad (a>b>0)$", "": "$c^2 = a^2 - b^2$c为半焦距"}',
'{"": "", "": ["", "", "便"]}',
'{"": "", "": ""}',
ARRAY['K3-1-1-01 椭圆的定义', '距离公式', '代数化简'],
'{"": ["K3-1-1-03 "], "": ["", "", ""], "": "33.1.1 P38-40"}',
'核心',
ARRAY['方程建立', '参数计算', '标准方程求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-03',
'三级',
'椭圆的几何性质',
'性质/特征',
'{"": "$-a \\le x \\le a$$-b \\le y \\le b$", "": "x轴y轴和原点对称", "": "$A_1(-a,0)$, $A_2(a,0)$, $B_1(0,-b)$, $B_2(0,b)$", "": "$A_1A_2$长为$2a$$B_1B_2$长为$2b$", "": "$e = \\frac{c}{a}$$0<e<1$"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": "01"}',
ARRAY['K3-1-1-02 椭圆的标准方程'],
'{"": [], "": ["", "", ""], "": "33.1.2 P42-47"}',
'核心',
ARRAY['性质应用', '参数计算', '几何分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-04',
'三级',
'椭圆的离心率',
'概念/公式',
'{"": "", "": "$e = \\frac{c}{a}$", "": "$0 < e < 1$"}',
'{"": "", "": ["", "e越接近0越接近圆", "e越接近1越扁平"]}',
'{"": "", "": ""}',
ARRAY['K3-1-1-01 椭圆的定义', 'K3-1-1-02 椭圆的标准方程'],
'{"": [], "": ["", "", ""], "": "33.1.2 P46"}',
'重要',
ARRAY['离心率计算', '形状比较', '几何分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-1-1-05',
'三级',
'椭圆的另一种定义',
'概念/定义',
'{"": "M与定点F的距离和它到定直线l的距离的比是常数e(0<e<1)", "": "$\\frac{|MF|}{d} = e = \\frac{c}{a}$", "线": "$x = \\pm \\frac{a^2}{c}$x轴时"}',
'{"": "", "": ["", "1", "线"]}',
'{"": "线", "": ""}',
ARRAY['K3-1-1-01 椭圆的定义', '点到直线距离公式'],
'{"": [], "": ["", "", ""], "": "33.1.2 P50-52"}',
'重要',
ARRAY['概念理解', '轨迹求解', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-01',
'二级',
'双曲线的定义',
'概念/定义',
'{"": "F1, F2的距离的差的绝对值等于非零常数(|F1F2|)线", "": "F1, F2称为双曲线的焦点", "": "线"}',
'{"": "线", "": ["", "", ""]}',
'{"": "线", "": "|F1F2|0"}',
ARRAY['K3-1-1-01 椭圆的定义', '绝对值概念'],
'{"": ["K3-2-1-02 线", "K3-2-1-03 线"], "": ["", ""], "": "33.2.1 P53"}',
'核心',
ARRAY['概念理解', '轨迹判断', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-02',
'三级',
'双曲线的标准方程',
'公式',
'{"x轴上": "$\\frac{x^2}{a^2} - \\frac{y^2}{b^2} = 1 \\quad (a>0, b>0)$", "y轴上": "$\\frac{y^2}{a^2} - \\frac{x^2}{b^2} = 1 \\quad (a>0, b>0)$", "": "$c^2 = a^2 + b^2$c为半焦距"}',
'{"": "线", "": ["", "", ""]}',
'{"": "线", "": ""}',
ARRAY['K3-2-1-01 双曲线的定义', '距离公式', '代数化简'],
'{"": ["K3-2-1-03 线"], "": ["", "", ""], "": "33.2.1 P54-56"}',
'核心',
ARRAY['方程建立', '参数计算', '标准方程求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-03',
'三级',
'双曲线的几何性质',
'性质/特征',
'{"": "$x \\le -a$或$x \\ge a$$y \\in \\mathbb{R}$", "": "x轴y轴和原点对称", "": "$A_1(-a,0)$, $A_2(a,0)$", "": "$A_1A_2$长为$2a$$B_1B_2$长为$2b$", "线": "$y = \\pm \\frac{b}{a}x$", "": "$e = \\frac{c}{a}$$e>1$"}',
'{"": "线", "": ["线", "线线", ""]}',
'{"": "线", "": "线"}',
ARRAY['K3-2-1-02 双曲线的标准方程'],
'{"": ["K3-2-1-04 线线", "K3-2-1-05 线"], "": ["", "", "线"], "": "33.2.2 P57-63"}',
'核心',
ARRAY['性质应用', '参数计算', '几何分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-04',
'三级',
'双曲线的渐近线',
'概念/公式',
'{"": "线线", "": "$y = \\pm \\frac{b}{a}x$", "": "线线"}',
'{"": "线线", "": ["", "线", "线"]}',
'{"": "线", "": "线线"}',
ARRAY['K3-2-1-02 双曲线的标准方程', '极限概念'],
'{"": [], "": ["线", "", ""], "": "33.2.2 P60-62"}',
'重要',
ARRAY['渐近线求解', '图形分析', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-05',
'三级',
'双曲线的离心率',
'概念/公式',
'{"": "线", "": "$e = \\frac{c}{a}$", "": "$e > 1$"}',
'{"": "线", "": ["", "e越大张口越大", "线"]}',
'{"": "线", "": "线"}',
ARRAY['K3-2-1-01 双曲线的定义', 'K3-2-1-02 双曲线的标准方程'],
'{"": [], "": ["", "", ""], "": "33.2.2 P63"}',
'重要',
ARRAY['离心率计算', '形状比较', '几何分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-2-1-06',
'三级',
'等轴双曲线',
'概念/定义',
'{"": "线", "": "$x^2 - y^2 = a^2$", "": "$a = b$线$y = \\pm x$且互相垂直"}',
'{"": "线线", "": ["", "线", ""]}',
'{"": "线", "": "线$e = \\sqrt{2}$"}',
ARRAY['K3-2-1-02 双曲线的标准方程', 'K3-2-1-04 双曲线的渐近线'],
'{"": [], "": ["", "", ""], "": "33.2.2 P62"}',
'基础',
ARRAY['特殊方程', '性质应用', '图形分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-3-1-01',
'二级',
'抛物线的定义',
'概念/定义',
'{"": "F和一条定直线l的距离相等的点的轨迹叫做抛物线", "": "F称为抛物线的焦点", "线": "线l称为抛物线的准线"}',
'{"": "线线线", "": ["线", "线", ""]}',
'{"": "线", "": "线"}',
ARRAY['K3-1-1-05 椭圆的另一种定义', '点到直线距离公式'],
'{"": ["K3-3-1-02 线", "K3-3-1-03 线"], "": ["", ""], "": "33.3 P64"}',
'核心',
ARRAY['概念理解', '轨迹判断', '几何应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-3-1-02',
'三级',
'抛物线的标准方程',
'公式',
'{"": "$y^2 = 2px \\quad (p>0)$$F(\\frac{p}{2},0)$线$x = -\\frac{p}{2}$", "": "$y^2 = -2px \\quad (p>0)$$F(-\\frac{p}{2},0)$线$x = \\frac{p}{2}$", "": "$x^2 = 2py \\quad (p>0)$$F(0,\\frac{p}{2})$线$y = -\\frac{p}{2}$", "": "$x^2 = -2py \\quad (p>0)$$F(0,-\\frac{p}{2})$线$y = \\frac{p}{2}$"}',
'{"": "线", "": ["", "p的几何意义明确", ""]}',
'{"": "线", "": "p表示焦点到准线的距离"}',
ARRAY['K3-3-1-01 抛物线的定义', '点到直线距离公式'],
'{"": ["K3-3-1-03 线"], "": ["", "", ""], "": "33.3 P65-67"}',
'核心',
ARRAY['方程建立', '参数计算', '标准方程求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K3-3-1-03',
'三级',
'抛物线的几何性质',
'性质/特征',
'{"": "", "": "", "": "(0,0)", "": "$e = 1$", "": "线"}',
'{"": "线", "": ["", "1", ""]}',
'{"": "线", "": "线1线"}',
ARRAY['K3-3-1-02 抛物线的标准方程'],
'{"": [], "": ["", "", ""], "": "33.3 P68-70"}',
'核心',
ARRAY['性质应用', '参数计算', '几何分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-01',
'二级',
'随机现象',
'概念/定义',
'{"": "", "": ["", "", ""], "": ""}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['现象观察', '数据分析基础'],
'{"": ["K10-1-02 ", "K10-1-03 "], "": "", "": "2 10 P234"}',
'核心',
ARRAY['概念理解', '现象识别', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-02',
'二级',
'随机试验',
'概念/定义',
'{"": "E表示", "": ["", "", ""], "": "E ()"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": "(1)(2)(3)"}',
ARRAY['K10-1-01 随机现象'],
'{"": ["", ""], "": "", "": "2 1010.1.1 P235"}',
'核心',
ARRAY['试验设计', '特征识别', '条件判断']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-03',
'二级',
'样本点',
'概念/定义',
'{"": "E的每个可能的基本结果", "": ["", "", ""], "": "ω ()"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-02 随机试验'],
'{"": ["", ""], "": "", "": "2 1010.1.1 P235"}',
'核心',
ARRAY['样本点列举', '结果分析', '空间构建']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-04',
'二级',
'样本空间',
'概念/定义',
'{"": "Ω", "": ["", "", ""], "": "Ω"}',
'{"": "", "": ["", "", "()"]}',
'{"": "", "": ""}',
ARRAY['K10-1-03 样本点', '集合概念'],
'{"": ["", ""], "": "", "": "2 1010.1.1 P235"}',
'核心',
ARRAY['空间构建', '样本点计数', '问题分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-05',
'二级',
'有限样本空间',
'概念/定义',
'{"": "", "": ["", "", ""], "": "Ω = {ω, ω, ..., ω}"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-04 样本空间', '有限集合概念'],
'{"": ["", ""], "": "", "": "2 1010.1.1 P235"}',
'核心',
ARRAY['类型判断', '条件识别', '应用分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-06',
'二级',
'随机事件',
'概念/定义',
'{"": "Ω", "": ["", "", ""], "": "A, B, C... ()"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-04 样本空间', '子集概念'],
'{"": ["", "", ""], "": "", "": "2 1010.1.1 P236"}',
'核心',
ARRAY['事件识别', '集合表示', '关系分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-07',
'三级',
'基本事件',
'概念/定义',
'{"": "", "": ["", "", ""], "": "{ω}"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-06 随机事件', 'K10-1-03 样本点'],
'{"": ["", ""], "": "", "": "2 1010.1.1 P236"}',
'重要',
ARRAY['基本事件识别', '事件分解', '概率计算基础']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-08',
'三级',
'必然事件',
'概念/定义',
'{"": "", "": ["", "", "1"], "": "Ω"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-06 随机事件', 'K10-1-04 样本空间'],
'{"": ["", ""], "": "", "": "2 1010.1.1 P237"}',
'重要',
ARRAY['事件识别', '性质应用', '概率计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-09',
'三级',
'不可能事件',
'概念/定义',
'{"": "", "": ["", "", "0"], "": ""}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-06 随机事件', '空集概念'],
'{"": ["", ""], "": "", "": "2 1010.1.1 P237"}',
'重要',
ARRAY['事件识别', '性质应用', '概率计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-10',
'二级',
'事件的包含关系',
'概念/定义',
'{"": "A发生B一定发生B包含事件AAB", "": ["", "", ""], "": "A B"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-06 随机事件', '集合包含关系'],
'{"": ["", ""], "": "", "": "2 1010.1.2 P238"}',
'重要',
ARRAY['关系判断', '逻辑分析', '概率比较']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-11',
'二级',
'事件的相等',
'概念/定义',
'{"": "A包含事件BB包含事件AA与事件B相等A=B", "": ["", "", ""], "": "A = B"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-10 事件的包含关系'],
'{"": ["", ""], "": "", "": "2 1010.1.2 P238"}',
'重要',
ARRAY['相等判断', '表示简化', '逻辑分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-12',
'二级',
'并事件(和事件)',
'概念/定义',
'{"": "A与事件B至少有一个发生的事件AB或A+B", "": ["", "", ""], "": "A B A + B"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-06 随机事件', '集合并集概念'],
'{"": ["", ""], "": "", "": "2 1010.1.2 P239"}',
'核心',
ARRAY['事件构建', '概率计算', '逻辑分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-13',
'二级',
'交事件(积事件)',
'概念/定义',
'{"": "A与事件B同时发生的事件AB或AB", "": ["", "", ""], "": "A B AB"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-06 随机事件', '集合交集概念'],
'{"": ["", ""], "": "", "": "2 1010.1.2 P239"}',
'核心',
ARRAY['事件构建', '概率计算', '逻辑分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-14',
'二级',
'互斥事件(互不相容)',
'概念/定义',
'{"": "A与事件B不能同时发生AB=", "": ["", "", ""], "": "A B = "}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-13 交事件', 'K10-1-09 不可能事件'],
'{"": ["", ""], "": "", "": "2 1010.1.2 P240"}',
'核心',
ARRAY['关系判断', '概率计算', '事件分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-15',
'二级',
'对立事件',
'概念/定义',
'{"": "A与事件B有且仅有一个发生AB=ΩAB=B称为事件A的对立事件Ā", "": ["", "", ""], "": "Ā (A的对立事件)"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-14 互斥事件', 'K10-1-08 必然事件'],
'{"": ["", ""], "": "", "": "2 1010.1.2 P241"}',
'核心',
ARRAY['关系判断', '概率计算', '事件分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-16',
'二级',
'概率',
'概念/定义',
'{"": "A的概率用P(A)", "": ["", "", "0P1"], "": "P(A)"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-06 随机事件', '数值概念'],
'{"": ["", "", ""], "": "", "": "2 1010.1.3 P248"}',
'核心',
ARRAY['概念理解', '性质应用', '数值计算']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-17',
'二级',
'古典概型',
'概念/定义',
'{"": "", "": ["", "", ""], "": ""}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-05 有限样本空间', 'K10-1-16 概率'],
'{"": ["", ""], "": "", "": "2 1010.1.3 P250"}',
'核心',
ARRAY['模型判断', '概率计算', '条件分析']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-18',
'二级',
'古典概率',
'公式',
'{"": "P(A) = k/n = n(A)/n(Ω)", "": {"k": "A包含的样本点个数", "n": "", "n(A)": "A的样本点数", "n(Ω)": ""}}',
'{"": "1/nA概率为其包含样本点数之和", "": ["", "", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-17 古典概型', 'K10-1-16 概率'],
'{"": ["", ""], "": "", "": "2 1010.1.3 P251"}',
'核心',
ARRAY['概率计算', '公式应用', '问题求解']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-1-19',
'二级',
'概率的基本性质',
'定理/性质',
'{"": ["1AP(A)0", "2P(Ω)=1P()=0", "3A与B互斥P(AB)=P(A)+P(B)", "4A与B对立P(B)=1-P(A)", "5ABP(A)P(B)", "6P(AB)=P(A)+P(B)-P(AB)"]}',
'{"": "", "": ""}',
'{"": "", "": "3广"}',
ARRAY['K10-1-16 概率', 'K10-1-14 互斥事件', 'K10-1-15 对立事件'],
'{"": ["", ""], "": "", "": "2 1010.1.4 P254-256"}',
'核心',
ARRAY['性质应用', '概率计算', '推导证明']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-2-01',
'二级',
'相互独立事件',
'概念/定义',
'{"": "A与BP(AB)=P(A)P(B)A与事件B相互独立", "": ["", "", ""], "": "P(AB) = P(A)P(B)"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": "(01)"}',
ARRAY['K10-1-13 交事件', 'K10-1-16 概率'],
'{"": ["", ""], "": "", "": "2 1010.2 P262"}',
'核心',
ARRAY['独立性判断', '概率计算', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-2-02',
'三级',
'独立事件的对立独立性',
'定理/性质',
'{"": "A与事件B相互独立A与B̄ĀBĀB̄也都相互独立", "": ["", "", ""], "": "P(A)P()=P(AB̄), P(Ā)P(B)=P(ĀB), P(Ā)P()=P(Ā)"}',
'{"": "P(A)=P(AB)+P(AB̄)", "": ["", "", ""]}',
'{"": "A与B相互独立", "": ""}',
ARRAY['K10-2-01 相互独立事件', 'K10-1-15 对立事件'],
'{"": ["", ""], "": "", "": "2 1010.2 P264"}',
'重要',
ARRAY['性质应用', '概率计算', '逻辑推导']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-3-01',
'二级',
'频率',
'概念/定义',
'{"": "n次重复试验中A发生的次数nA与试验次数n的比值fn(A)", "": ["", "", ""], "": "fₙ(A) = nₐ/n"}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-1-02 随机试验', 'K10-1-06 随机事件'],
'{"": ["", ""], "": "", "": "2 1010.3.1 P267"}',
'核心',
ARRAY['频率计算', '概念理解', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-3-02',
'二级',
'频率的稳定性',
'定理/性质',
'{"": "n的增大A发生的频率fₙ(A)A发生的概率P(A)", "": ["", "", ""], "": "lim(n)fₙ(A) = P(A)"}',
'{"": "", "": ""}',
'{"": "", "": ""}',
ARRAY['K10-3-01 频率', 'K10-1-16 概率'],
'{"": ["", ""], "": "", "": "2 1010.3.1 P269"}',
'核心',
ARRAY['概念理解', '稳定性分析', '实际应用']
);
INSERT INTO kg.knowledge (id, level, name, type, core_content, principle, conditions, prerequisites, related_content, importance, exam_ways)
VALUES (
'K10-3-03',
'三级',
'随机模拟',
'概念/定义',
'{"": "", "": ["", "", ""], "": ""}',
'{"": "", "": ["", "", ""]}',
'{"": "", "": ""}',
ARRAY['K10-3-01 频率', '随机数概念'],
'{"": ["", ""], "": "", "": "2 1010.3.2 P272"}',
'重要',
ARRAY['方法应用', '模拟设计', '结果分析']
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-1-01',
'倾斜角计算方法',
'计算方法',
NULL,
NULL,
ARRAY['数形结合思想', '函数思想', '分类讨论思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-1-02',
'斜率计算方法',
'计算方法',
NULL,
NULL,
ARRAY['坐标思想', '对应思想', '代数运算思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-01',
'两直线平行判定方法',
'判定方法',
NULL,
NULL,
ARRAY['对应思想', '演绎推理思想', '特殊与一般思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-02',
'两直线垂直判定方法',
'判定方法',
NULL,
NULL,
ARRAY['对应思想', '逆向思维思想', '数形结合思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-2-1-01',
'直线点斜式方程建立方法',
'建立方法',
NULL,
NULL,
ARRAY['建模思想', '函数思想', '代数几何转化思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-2-1-02',
'直线斜截式方程建立方法',
'建立方法',
NULL,
NULL,
ARRAY['建模思想', '函数思想', '参数思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-2-2-01',
'直线两点式方程建立方法',
'建立方法',
NULL,
NULL,
ARRAY['对应思想', '比例思想', '代数运算思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-2-2-02',
'直线截距式方程建立方法',
'建立方法',
NULL,
NULL,
ARRAY['几何直观思想', '参数思想', '数形结合思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-2-3-01',
'直线方程形式转换方法',
'转换方法',
NULL,
NULL,
ARRAY['等价转化思想', '代数变形思想', '标准化思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-3-1-01',
'两直线交点坐标求解方法',
'求解方法',
NULL,
NULL,
ARRAY['方程思想', '消元思想', '数形结合思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-3-2-01',
'点到直线距离计算方法',
'计算方法',
NULL,
NULL,
ARRAY['公式化思想', '绝对值思想', '距离概念推广思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-3-3-01',
'两平行直线间距离计算方法',
'计算方法',
NULL,
NULL,
ARRAY['等价转化思想', '特殊化思想', '类比思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-4-1-01',
'圆的标准方程建立方法',
'建立方法',
NULL,
NULL,
ARRAY['几何建模思想', '距离概念推广思想', '参数思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-4-2-01',
'圆的一般方程建立方法',
'建立方法',
NULL,
NULL,
ARRAY['待定系数思想', '方程组思想', '代数运算思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-5-1-01',
'直线与圆位置关系判定方法',
'判定方法',
NULL,
NULL,
ARRAY['分类讨论思想', '几何直观思想', '比较思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-5-1-02',
'直线与圆相交弦长计算方法',
'计算方法',
NULL,
NULL,
ARRAY['几何直观思想', '勾股定理应用思想', '数形结合思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-5-2-01',
'圆与圆位置关系判定方法',
'判定方法',
NULL,
NULL,
ARRAY['分类讨论思想', '比较思想', '几何直观思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-5-1-03',
'圆的切线方程求解方法',
'求解方法',
NULL,
NULL,
ARRAY['几何性质应用思想', '方程思想', '分类讨论思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-3-2-02',
'坐标法证明几何命题方法',
'证明方法',
NULL,
NULL,
ARRAY['数形结合思想', '转化思想', '建模思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-2-3-02',
'直线参数方程应用方法',
'应用方法',
NULL,
NULL,
ARRAY['参数思想', '向量思想', '运动观点思想'],
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-1-01',
'散点图绘制法',
'可视化方法',
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-1-02',
'样本相关系数计算法',
'计算方法',
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-2-01',
'最小二乘估计法',
'参数估计方法',
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-2-02',
'残差分析法',
'模型诊断方法',
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-2-03',
'决定系数计算法',
'模型评价方法',
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-3-01',
'2×2列联表构造法',
'数据整理方法',
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-3-02',
'卡方独立性检验法',
'假设检验方法',
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-3-03',
'期望频数计算法',
'计算方法',
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-1-01',
'作差比较法',
'解题方法',
'{"": "", "": "A和B的大小时A-B的值", "": "(a+x)(a+y)(a+z)(a+w)"}',
'[{"": 1, "": "A-B", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "A>BA<BA=B", "": ""}]',
ARRAY['转化思想', '分类讨论思想'],
'通过作差将大小比较转化为符号判断问题',
NULL,
'[{"": "", "": "", "": ""}, {"": "", "": "", "": ""}]',
2,
'必修1 第2章2.1节 P42-43 例1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-1-02',
'不等式建模法',
'解题方法',
'{"": "", "": "''''''''''''''''", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": "使, , >, <"}, {"": 4, "": "", "": ""}]',
ARRAY['数学建模思想', '符号化思想'],
'将文字语言转化为数学语言,建立数学模型',
NULL,
'[{"": "", "": "", "": ""}, {"": "", "": "''''''''", "": ""}]',
2,
'必修1 第2章2.1节 P41-42 问题1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-01',
'不等式传递性应用法',
'解题方法',
'{"": "", "": "", "": "a>b>c或建立类似的不等式链"}',
'[{"": 1, "": "", "": "使"}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": "a>b, b>c a>c"}]',
ARRAY['传递性思想', '逻辑推理思想'],
'通过中间量建立不等式传递链,证明目标不等式',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修1 第2章2.1节 P45 性质2'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-02',
'不等式移项法则',
'计算技巧',
'{"": "", "": "", "": "ax + b > c ax > c - b"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}]',
ARRAY['变形思想'],
'利用不等式两边同加同数性质实现移项',
NULL,
'[{"": "", "": "", "": ""}]',
1,
'必修1 第2章2.1节 P45 性质3推论'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-03',
'同向不等式相加法',
'解题方法',
'{"": "", "": "", "": "a>b, c>d a+c>b+d"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['叠加思想', '构造思想'],
'通过同向不等式相加构造新的不等式',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修1 第2章2.1节 P45-46 性质5'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-04',
'分析法证明不等式',
'证明方法',
'{"": "", "": "使", "": "ab (a+b)/2 (a>0,b>0)"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "使", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['分析法思想', '逻辑推理思想'],
'执果索因,从结论寻找充分条件',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修1 第2章2.2节 P48-50'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-05',
'基本不等式直接应用法',
'解题方法',
'{"": "", "": "", "": "a+b的最小值或ab的最大值"}',
'[{"": 1, "": "使", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "a+b 2ab ab ((a+b)/2)²", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['优化思想', '条件最值思想'],
'构造满足基本不等式条件的形式,利用其求最值',
NULL,
'[{"": "", "": "使", "": "使"}, {"": "", "": "", "": ""}]',
3,
'必修1 第2章2.2节 P49-52 例1-4'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-06',
'几何解释法',
'证明方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合思想', '几何直观'],
'通过几何图形的直观性理解不等式的本质',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修1 第2章2.2节 P50-51 图2.2-1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-2-07',
'凑配法(凑定值法)',
'计算技巧',
'{"": "", "": "使", "": "x+1/x变形"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['变形思想', '构造思想'],
'通过巧妙变形构造基本不等式的应用条件',
ARRAY['M2-1-2-05'],
'[{"": "", "": "", "": ""}]',
3,
'必修1 第2章2.2节 各例题'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-3-01',
'函数图象法解一元二次不等式',
'解题方法',
'{"": "", "": "ax²+bx+c>0ax²+bx+c<0", "": "x²-5x+6>0, 2x²+3x-50"}',
'[{"": 1, "": "ax²+bx+c>0ax²+bx+c<0a>0", "": "a<0-1"}, {"": 2, "": "Δ=b²-4ac的值", "": "Δ"}, {"": 3, "": "Δax²+bx+c=0", "": "Δ>0Δ=0Δ<0"}, {"": 4, "": "y=ax²+bx+c的示意图", "": ""}, {"": 5, "": "x轴的位置关系确定不等式的解集", "": ""}]',
ARRAY['函数思想', '数形结合思想', '分类讨论思想'],
'以函数零点为纽带,利用函数图象直观确定解集',
NULL,
'[{"": "", "": "a<0", "": "a<0-1"}, {"": "", "": "", "": "Δ=b²-4ac"}, {"": "", "": "", "": ""}]',
3,
'必修1 第2章2.3节 P56-59 例1-3'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-3-02',
'一元二次不等式标准化求解法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "ax²+bx+c>0<0a>0", "": ""}, {"": 2, "": "Δ=b²-4ac的值", "": ""}, {"": 3, "": "Δ", "": "Δ>0Δ=0Δ<0"}, {"": 4, "": "", "": ""}]',
ARRAY['程序化思想', '分类讨论思想'],
'按照标准化流程系统求解,避免遗漏',
ARRAY['M2-1-3-01'],
'[{"": "", "": "", "": ""}]',
2,
'必修1 第2章2.3节 P57 图2.3-5'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-3-03',
'不等式求解实际应用法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": "使"}, {"": 4, "": "", "": ""}, {"": 5, "": "", "": ""}]',
ARRAY['数学建模思想', '应用思想'],
'将实际问题转化为数学问题,用不等式求解后再回到实际',
ARRAY['M2-1-1-02', 'M2-1-3-01'],
'[{"": "", "": "", "": ""}, {"": "", "": "", "": ""}]',
4,
'必修1 第2章2.3节 P57-62 例4-5'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-3-04',
'函数值符号分析法',
'解题方法',
'{"": "", "": "", "": "f(x)>0, f(x)=0, f(x)<0"}',
'[{"": 1, "": "", "": "使"}, {"": 2, "": "f(x)=0", "": ""}, {"": 3, "": "x的取值范围", "": ""}]',
ARRAY['函数思想', '数形结合思想'],
'通过零点将数轴分段,分析每段函数值的符号',
ARRAY['M2-1-3-01'],
'[{"": "", "": "", "": ""}]',
3,
'必修1 第2章2.3节 P58-59 练习2'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M2-1-3-05',
'代数式有意义的条件确定法',
'解题方法',
'{"": "", "": "", "": "f(x)1/f(x)"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "0"}, {"": 3, "": "", "": ""}]',
ARRAY['定义域思想', '条件约束思想'],
'根据代数式的定义要求建立不等式约束',
ARRAY['M2-1-3-01'],
'[{"": "", "": "", "": ""}]',
2,
'必修1 第2章2.3节 P58-61 习题2.3第2题'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M10-1-01',
'样本空间构建法',
'基础方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": "使"}, {"": 4, "": "", "": ""}]',
ARRAY['系统性思想', '分类思想'],
'从试验过程出发,系统分析所有可能的结果',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 第10章10.1.1节 P235-237'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M10-1-02',
'事件关系分析法',
'分析方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['集合论思想', '逻辑推理思想'],
'利用集合论方法分析事件关系,实现概率问题的集合化',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第10章10.1.2节 P238-242'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M10-1-03',
'古典概型概率计算法',
'计算方法',
'{"": "", "": "", "": "P(A) = k/n = A包含的样本点数/"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "n", "": ""}, {"": 3, "": "A包含的样本点数k", "": "使A发生"}, {"": 4, "": "P(A) = k/n计算概率", "": "[0,1]"}]',
ARRAY['等可能性思想', '计数思想'],
'先确认古典概型条件,再准确计数',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第10章10.1.3节 P250-252'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M10-1-04',
'概率性质应用法',
'计算方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": "使"}, {"": 4, "": "", "": "[0,1]"}]',
ARRAY['性质应用思想', '转化思想'],
'熟练掌握概率的基本性质,灵活运用于计算',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 第10章10.1.4节 P254-256'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M10-2-01',
'独立性判断与计算法',
'计算方法',
'{"": "", "": "", "": "P(AB)=P(A)P(B)"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "P(A)P(B)"}, {"": 3, "": "P(AB)", "": ""}, {"": 4, "": "", "": "P(AB)=P(A)P(B)"}]',
ARRAY['独立性思想', '分解思想'],
'先验证独立性,再利用独立性性质简化计算',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 第10章10.2节 P262-268'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M10-3-01',
'频率估计概率法',
'估计方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": " = /"}, {"": 4, "": "", "": ""}]',
ARRAY['统计推断思想', '频率稳定性思想'],
'利用大量重复试验的频率稳定性估计概率',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第10章10.3.1节 P267-270'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M10-3-02',
'随机模拟试验法',
'模拟方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": "使"}, {"": 4, "": "", "": ""}]',
ARRAY['模拟思想', '计算思维'],
'将实际试验转化为随机数模拟,提高效率',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 第10章10.3.2节 P272-275'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M10-应用-01',
'概率建模解决实际问题',
'应用方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['建模思想', '应用思想'],
'从实际到数学再到实际,建立完整的应用链条',
NULL,
'[{"": "", "": "", "": ""}]',
5,
'必修第二册 第10章各节应用实例'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-1-1-01',
'向量概念识别法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['分类思想', '概念辨析'],
'抓住向量的两个基本要素:大小和方向,进行判断分析',
NULL,
'[{"": "", "": "", "": ""}]',
1,
'必修第二册 P9'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-1-1-02',
'向量相等与共线判断法',
'证明方法',
'{"": "线", "": "线", "": "线"}',
'[{"": 1, "": "", "": "线"}, {"": 2, "": "", "": ""}, {"": 3, "": "线", "": ""}, {"": 4, "": "", "": "线"}]',
ARRAY['数形结合', '几何直观'],
'通过几何图形直观分析,结合向量定义进行判断',
ARRAY['M6-1-1-01'],
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 P11'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-1-01',
'向量加法作图法',
'解题方法',
'{"": "", "": "a+b", "": "a,ba+b"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "aa的终点为起点作向量ba的起点和b的终点", "": ""}, {"": 3, "": "a,b线", "": "线"}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合', '几何直观'],
'灵活运用三角形法则和平行四边形法则,通过几何作图求解',
ARRAY['M6-1-1-02'],
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 P15'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-2-01',
'向量减法几何作图法',
'解题方法',
'{"": "", "": "a-b", "": "a,ba-b"}',
'[{"": 1, "": "a和b平移到同一起点", "": ""}, {"": 2, "": "b的终点指向向量a的终点作向量", "": "a-b是从b的终点指向a的终点"}, {"": 3, "": "a-b", "": "a+(-b)"}]',
ARRAY['数形结合', '转化思想'],
'将减法转化为几何作图,利用终点的相对位置确定差向量',
ARRAY['M6-2-1-01'],
'[{"": "", "": "a-b和b-a的几何意义", "": "a-b是从b的终点指向a的终点b-a是从a的终点指向b的终点"}]',
2,
'必修第二册 P19'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-3-01',
'向量线性运算化简法',
'计算技巧',
'{"": "", "": "", "": "λa±λb±..."}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": "0"}]',
ARRAY['化归思想', '运算技巧'],
'类比多项式的运算,运用向量运算律进行化简',
ARRAY['M6-2-1-01', 'M6-2-2-01'],
'[{"": "使", "": "", "": ""}]',
2,
'必修第二册 P21'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-3-02',
'向量共线参数求解法',
'证明方法',
'{"": "线线", "": "线", "": "线"}',
'[{"": 1, "": "λ", "": ""}, {"": 2, "": "λ", "": "线"}, {"": 3, "": 3, "": "λ", "": ""}, {"": 4, "": "", "": "使"}]',
ARRAY['方程思想', '化归思想'],
'利用向量共线的充要条件,通过建立方程求解参数',
ARRAY['M6-2-3-01'],
'[{"": "", "": "线", "": ""}]',
3,
'必修第二册 P23'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-4-01',
'三点共线向量证明法',
'证明方法',
'{"": "线", "": "A,B,C三点共线", "": "A,B,C三点在同一直线上"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "λ", "": "λ"}, {"": 4, "": "线线", "": "λ0"}]',
ARRAY['数形结合', '化归思想'],
'将几何问题转化为向量问题,利用向量共线条件证明',
ARRAY['M6-2-3-01', 'M6-2-3-02'],
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 P23'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-4-02',
'数量积计算技巧法',
'计算技巧',
'{"": "", "": "a·b或相关表达式", "": "|a|,|b|a·b"}',
'[{"": 1, "": "", "": "a·b=|a||b|cosθ"}, {"": 2, "": "", "": "[0,π]"}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": "a·a=|a|²aba·b=0"}]',
ARRAY['公式化思想', '分类讨论'],
'熟练运用数量积定义和性质,选择最优计算方法',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 P26'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-4-03',
'向量垂直判断法',
'证明方法',
'{"": "", "": "", "": "ab或求ab的条件"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "a·b的值", "": ""}, {"": 3, "": "", "": "a·b=0ab"}, {"": 4, "": "", "": ""}]',
ARRAY['等价转化', '逻辑推理'],
'利用向量垂直的充要条件,通过计算数量积进行判断',
ARRAY['M6-2-4-02'],
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 P26'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-4-04',
'向量投影分析法',
'解题方法',
'{"": "", "": "", "": "a在向量b上的投影"}',
'[{"": 1, "": "", "": "线"}, {"": 2, "": "|a|cosθ计算投影长度", "": "cosθ的符号决定投影方向"}, {"": 3, "": "cosθ的符号确定方向", "": "cosθ>0cosθ<0"}, {"": 4, "": "", "": "=|a|cosθ·ee为与b同向的单位向量"}]',
ARRAY['数形结合', '几何直观'],
'利用投影的几何意义,通过三角函数计算投影长度和方向',
ARRAY['M6-2-4-02'],
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 P25'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-3-1-01',
'平行四边形对角线向量法',
'解题方法',
'{"": "", "": "线", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "线线", "": "线"}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合', '化归思想'],
'利用平行四边形的性质,将几何关系转化为向量运算',
ARRAY['M6-2-1-01', 'M6-2-2-01'],
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 P19'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-3-2-01',
'三角形中线向量法',
'解题方法',
'{"": "线", "": "线", "": "线"}',
'[{"": 1, "": "线", "": "线"}, {"": 2, "": "", "": ""}, {"": 3, "": "线线", "": "线=-"}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合', '化归思想'],
'利用中点的向量性质,将中线表示为边向量的线性组合',
ARRAY['M6-2-3-01'],
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 P22'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-4-1-01',
'向量模长计算法',
'计算技巧',
'{"": "", "": "|a|", "": ""}',
'[{"": 1, "": "", "": "a·a=|a|²"}, {"": 2, "": "", "": "a·a = |a|²"}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['等价转化', '公式化思想'],
'利用数量积与模长的关系,将长度计算转化为数量积计算',
ARRAY['M6-2-4-02'],
'[{"": "", "": "|a||a|²", "": "a·a=|a|²|a|"}]',
2,
'必修第二册 P27'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-4-2-01',
'向量夹角计算法',
'计算技巧',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "a·b", "": ""}, {"": 2, "": "|a||b|", "": ""}, {"": 3, "": "cosθ = (a·b)/(|a||b|)", "": ""}, {"": 4, "": "", "": "[0,π]"}]',
ARRAY['三角函数思想', '公式化思想'],
'利用数量积与夹角的关系,通过反三角函数计算夹角',
ARRAY['M6-2-4-02', 'M6-4-1-01'],
'[{"": "", "": "", "": "[0,π]"}]',
3,
'必修第二册 P26'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-1-01',
'条件概率计算法',
'解题方法',
'{"": "", "": "''...''''......''", "": "P(B|A)"}',
'[{"": 1, "": "A和目标事件B", "": ""}, {"": 2, "": "P(A)P(AB)", "": "P(AB)A和B同时发生的概率"}, {"": 3, "": "P(B|A)=P(AB)/P(A)", "": "P(A)>0"}]',
ARRAY['分类讨论思想', '样本空间缩减思想'],
'通过缩小样本空间,在已知条件下求概率',
NULL,
'[{"": "", "": "", "": "P(B|A)A发生的条件下B的概率P(AB)A和B同时发生的概率"}]',
2,
'选择性必修第7章7.1.1节 P49-53'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-1-02',
'样本空间缩减法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "A为新的样本空间", "": "ΩA"}, {"": 2, "": "", "": "n(AB)/n(A)"}]',
ARRAY['样本空间缩减思想'],
'直接在缩小的样本空间中计算概率',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'选择性必修第7章7.1.1节 P50-52'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-1-03',
'概率的乘法公式应用法',
'解题方法',
'{"": "", "": "P(AB)P(ABC)", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "P(AB)=P(A)P(B|A)", "": "P(ABC)=P(A)P(B|A)P(C|AB)"}]',
ARRAY['分步计算思想'],
'将复杂积事件分解为连续步骤的概率计算',
NULL,
'[{"": "P(AB)=P(A)P(B)", "": "", "": "AB独立时P(AB)=P(A)P(B)"}]',
3,
'选择性必修第7章7.1.1节 P51-53'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-2-01',
'全概率公式应用法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "A,A,...,Aₙ", "": "Aᵢ两两互斥"}, {"": 2, "": "P(Aᵢ)P(B|Aᵢ)", "": ""}, {"": 3, "": "P(B)=P(Aᵢ)P(B|Aᵢ)", "": ""}]',
ARRAY['分类讨论思想', '完备性思想'],
'将复杂问题分解为若干简单情况的概率加权求和',
ARRAY['M7-1-1-01 条件概率计算法'],
'[{"": "", "": "", "": ""}]',
4,
'选择性必修第7章7.1.2节 P54-61'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-2-02',
'贝叶斯公式应用法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "Aᵢ和结果事件B", "": ""}, {"": 2, "": "P(Aᵢ)P(B|Aᵢ)", "": ""}, {"": 3, "": "P(Aᵢ|B)=P(Aᵢ)P(B|Aᵢ)/P(B)", "": "P(B)"}]',
ARRAY['逆向推理思想', '概率修正思想'],
'通过结果修正对原因概率的估计',
ARRAY['M7-1-2-01 全概率公式应用法'],
'[{"": "", "": "", "": "P(Aᵢ)P(Aᵢ|B)"}]',
5,
'选择性必修第7章7.1.2节 P61-68'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-2-1-01',
'随机变量定义法',
'建模方法',
'{"": "", "": "", "": "X=...,"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['数量化思想', '映射思想'],
'将定性问题转化为定量问题',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'选择性必修第7章7.2节 P61-65'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-2-2-01',
'分布列构建法',
'建模方法',
'{"": "", "": "", "": "X的分布列"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "使"}, {"": 3, "": "1", "": "P(X=xᵢ)=1"}]',
ARRAY['完备性思想', '概率归一思想'],
'系统分析所有可能情况及其概率',
NULL,
'[{"": "", "": "", "": "1"}]',
3,
'选择性必修第7章7.2.2节 P65-73'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-3-1-01',
'离散型随机变量均值计算法',
'计算方法',
'{"": "", "": "E(X)", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "E(X)=xᵢpᵢ", "": ""}]',
ARRAY['加权平均思想'],
'以概率为权重计算平均值',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'选择性必修第7章7.3.1节 P74-82'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-3-2-01',
'离散型随机变量方差计算法',
'计算方法',
'{"": "", "": "D(X)σ(X)", "": ""}',
'[{"": 1, "": "E(X)", "": ""}, {"": 2, "": "D(X)=E(X²)-[E(X)]²", "": "便"}, {"": 3, "": "σ(X)=D(X)", "": ""}]',
ARRAY['离散程度度量思想'],
'通过偏差平方的期望值度量离散程度',
ARRAY['M7-3-1-01 离散型随机变量均值计算法'],
'[{"": "", "": "", "": "使"}]',
3,
'选择性必修第7章7.3.2节 P82-88'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-4-1-01',
'二项分布识别法',
'建模方法',
'{"": "", "": "", "": "n次独立试验p"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "n和成功概率p", "": "n固定p相同"}, {"": 4, "": "X表示n次试验中成功的次数", "": "X取值范围为0,1,2,...,n"}]',
ARRAY['独立重复试验思想'],
'识别二项分布的三个关键特征n重伯努利试验、独立性、恒定成功概率',
NULL,
'[{"": "", "": "vs无放回", "": ""}]',
3,
'选择性必修第7章7.4.1节 P94-108'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-4-1-02',
'二项分布概率计算法',
'计算方法',
'{"": "", "": "X~B(n,p)P(X=k)", "": "n次试验中恰好k次成功的概率"}',
'[{"": 1, "": "n和p", "": "n为试验次数p为每次成功概率"}, {"": 2, "": "P(X=k)=Cₙᵏpᵏ(1-p)", "": ""}, {"": 3, "": "", "": "P(aXb)=P(X=k)"}]',
ARRAY['组合计数思想', '独立事件乘法思想'],
'结合组合数和独立事件概率计算',
ARRAY['M7-4-1-01 二项分布识别法'],
'[{"": "", "": "", "": "Cₙᵏ的计算和二项分布公式"}]',
3,
'选择性必修第7章7.4.1节 P99-108'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-4-2-01',
'超几何分布概率计算法',
'计算方法',
'{"": "", "": "n件", "": "N件中有M件次品n件k件次品的概率"}',
'[{"": 1, "": "NMn", "": ""}, {"": 2, "": "P(X=k)=CₘᵏC_{N-M}^{n-k}/Cᴺⁿ", "": "k的取值范围max{0,n-(N-M)}kmin{n,M}"}]',
ARRAY['古典概型思想', '组合计数思想'],
'基于古典概型,用组合数计算有利结果数和总结果数',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'选择性必修第7章7.4.2节 P109-116'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-5-1-01',
'正态分布标准化法',
'计算方法',
'{"": "", "": "X~N(μ,σ²)P(a<X<b)", "": ""}',
'[{"": 1, "": "Z=(X-μ)/σ", "": "Z服从标准正态分布N(0,1)"}, {"": 2, "": "使", "": "使"}, {"": 3, "": "P(a<X<b)=Φ((b-μ)/σ)-Φ((a-μ)/σ)", "": "Φ(x)"}]',
ARRAY['标准化思想', '变量代换思想'],
'通过标准化将一般正态分布转化为标准正态分布',
NULL,
'[{"": "", "": "", "": "Z=(X-μ)/σ(X-μ)/σ²"}]',
4,
'选择性必修第7章7.5节 P117-128'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-5-1-02',
'3σ原则应用法',
'应用方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "μ±σμ±2σμ±3σ", "": "68.27%95.45%99.73%"}, {"": 2, "": "[μ-3σ,μ+3σ]", "": ""}]',
ARRAY['统计推断思想', '质量控制思想'],
'基于3σ原则进行异常值检测和质量控制',
NULL,
'[{"": "3σ", "": "", "": "3σ(0.27%)"}]',
2,
'选择性必修第7章7.5节 P124-128'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-1-1-01',
'椭圆定义法求轨迹方程',
'解题方法',
'{"": "", "": "", "": "|MF| + |MF| = 2a (2a > |FF|) M的轨迹方程"}',
'[{"": 1, "": "F, F", "": ""}, {"": 2, "": "", "": "2a > |FF|"}, {"": 3, "": "M(x,y)", "": "使[(x-x)²+(y-y)²] + [(x-x)²+(y-y)²] = 2a"}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合', '转化思想'],
'利用椭圆定义直接转化为代数方程',
NULL,
'[{"": "2a > |FF|", "": "", "": ""}]',
3,
'选择性必修第一册 P38 例1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-1-1-02',
'椭圆标准方程求解法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": "x轴上用+y轴上用+a²,b²"}, {"": 2, "": "a,b的方程", "": "c²=a²-b²e=c/a等关系式"}, {"": 3, "": "a,b的值", "": "a>b>0"}, {"": 4, "": "", "": ""}]',
ARRAY['方程思想', '分类讨论'],
'根据几何特征建立方程,求解参数确定方程',
NULL,
'[{"": "", "": "", "": "a²"}]',
2,
'选择性必修第一册 P40 例2'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-1-1-03',
'椭圆几何性质应用法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合', '参数思想'],
'利用几何性质建立数量关系,通过计算解决问题',
NULL,
'[{"": "", "": "a,b,c,e等参数理解不深", "": "a是半长轴b是半短轴c是半焦距e是离心率"}]',
3,
'选择性必修第一册 P45 例3'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-2-1-01',
'双曲线定义法求轨迹方程',
'解题方法',
'{"": "线", "": "", "": "||MF| - |MF|| = 2a (0 < 2a < |FF|) M的轨迹方程"}',
'[{"": 1, "": "F, F", "": ""}, {"": 2, "": "0", "": "0 < 2a < |FF|线"}, {"": 3, "": "M(x,y)", "": "使"}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合', '分类讨论'],
'利用双曲线定义直接转化为代数方程',
NULL,
'[{"": "", "": "线", "": "0 < 2a < |FF|"}]',
3,
'选择性必修第一册 P55 例1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-2-1-02',
'双曲线标准方程求解法',
'解题方法',
'{"": "线", "": "线", "": "线线"}',
'[{"": 1, "": "", "": "线"}, {"": 2, "": "", "": "c² = a² + b²e = c/a线y = ±(b/a)x"}, {"": 3, "": "a,b的值", "": "a > 0, b > 0"}, {"": 4, "": "线", "": ""}]',
ARRAY['方程思想', '转化思想'],
'根据几何特征建立方程,求解参数确定方程',
NULL,
'[{"": "线", "": "c² = a² - b²()c² = a² + b²(线)", "": "线c最大c² = a² + b²"}]',
3,
'选择性必修第一册 P56 例2'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-2-1-03',
'双曲线渐近线应用法',
'解题方法',
'{"": "线线", "": "线线线", "": "线线"}',
'[{"": 1, "": "线", "": "线y = ±(b/a)x"}, {"": 2, "": "线", "": "线k = ±b/a"}, {"": 3, "": "", "": ""}, {"": 4, "": "线", "": "线"}]',
ARRAY['数形结合', '极限思想'],
'利用渐近线的几何特征建立代数关系',
NULL,
'[{"": "线线", "": "线", "": "线线x²y²"}]',
3,
'选择性必修第一册 P61 例4'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-3-1-01',
'抛物线定义法求轨迹方程',
'解题方法',
'{"": "线", "": "线", "": "|MF| = d(M,l) M的轨迹方程"}',
'[{"": 1, "": "F的坐标和定直线l的方程", "": "F不能在准线l上"}, {"": 2, "": "M(x,y)", "": "使线"}, {"": 3, "": "", "": ""}, {"": 4, "": "p的值", "": "p为正数"}]',
ARRAY['数形结合', '转化思想'],
'利用抛物线定义直接转化为代数方程',
NULL,
'[{"": "线使", "": "", "": "(x,y)线Ax+By+C=0|Ax+By+C|/(A²+B²)"}]',
3,
'选择性必修第一册 P66 例1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-3-1-02',
'抛物线标准方程求解法',
'解题方法',
'{"": "线", "": "线", "": "线线"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "p的值", "": "p表示焦点到准线的距离"}, {"": 3, "": "线", "": "线"}, {"": 4, "": "线", "": ""}]',
ARRAY['对应思想', '分类讨论'],
'根据几何特征确定参数和方程形式',
NULL,
'[{"": "", "": "", "": "y² = ±2px(x轴开口)x² = ±2py(y轴开口)"}]',
2,
'选择性必修第一册 P67 例2'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-3-1-03',
'抛物线几何性质应用法',
'解题方法',
'{"": "线", "": "线线", "": "线"}',
'[{"": 1, "": "线", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合', '优化思想'],
'利用几何性质建立数量关系,结合代数方法求解',
NULL,
'[{"": "线1", "": "线", "": "线1线"}]',
3,
'选择性必修第一册 P69 例3'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-4-1-01',
'圆锥曲线统一方程应用法',
'解题方法',
'{"": "线", "": "线线", "": "线"}',
'[{"": 1, "": "线", "": "线"}, {"": 2, "": "", "": "|MF|/d = e ()"}, {"": 3, "": "线", "": "0 < e < 1()e = 1(线)e > 1(线)"}, {"": 4, "": "", "": "线"}]',
ARRAY['统一思想', '分类讨论'],
'从统一角度理解圆锥曲线,根据离心率分类讨论',
NULL,
'[{"": "线", "": "", "": "e(0,1)线e=1线e>1"}]',
4,
'选择性必修第一册 P72 例1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-5-1-01',
'直线与圆锥曲线位置关系判断法',
'解题方法',
'{"": "线线", "": "线线", "": ""}',
'[{"": 1, "": "线线", "": "线线"}, {"": 2, "": "x(y)", "": "ax²+bx+c=0"}, {"": 3, "": "Δ = b²-4ac的值", "": "Δ > 0Δ = 0Δ < 0"}, {"": 4, "": "", "": ""}]',
ARRAY['方程思想', '分类讨论'],
'通过联立方程转化为判别式问题',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'选择性必修第一册 P78 例1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M3-5-1-02',
'圆锥曲线弦长公式法',
'计算技巧',
'{"": "线线", "": "线线", "": "线线"}',
'[{"": 1, "": "线线", "": ""}, {"": 2, "": "线k", "": "|AB| = (1+k²)·|x-x|"}, {"": 3, "": "|x-x|", "": "|x-x| = [(x+x)²-4xx] = (Δ)/|a|"}, {"": 4, "": "", "": ""}]',
ARRAY['整体思想', '转化思想'],
'利用根与系数关系避免求交点坐标',
NULL,
'[{"": "", "": "", "": "线"}]',
4,
'选择性必修第一册 P81 例3'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-1-1-01',
'分类计数法',
'解题方法',
'{"": "", "": "''''''......''''''", "": "m类方案i类方案有nᵢ种方法"}',
'[{"": 1, "": "''''", "": ""}, {"": 2, "": "''''", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": "使N = n + n + ... + nₘ"}]',
ARRAY['分类思想', '集合思想'],
'分类讨论,独立计算,求和汇总',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'选择性必修第六章6.1节 P14-18'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-1-1-02',
'分步计数法',
'解题方法',
'{"": "", "": "''......''''......''''''", "": "m个步骤i步有nᵢ种方法"}',
'[{"": 1, "": "''''", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": "使N = n × n × ... × nₘ"}]',
ARRAY['分步思想', '乘法原理'],
'分步完成,依存计算,乘积汇总',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'选择性必修第六章6.1节 P18-26'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-1-1-03',
'综合计数法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['分类思想', '分步思想', '综合运用'],
'先分类再分步,或先分步再分类,灵活运用',
ARRAY['M6-1-1-01 分类计数法', 'M6-1-1-02 分步计数法'],
'[{"": "使", "": "", "": ""}]',
3,
'选择性必修第六章6.1节 P26-29'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-2-01',
'排列数公式法',
'计算技巧',
'{"": "n个不同元素中取出m个元素的排列数", "": "''''''''", "": "Aₙᵐ的值"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "n和m的值", "": "m n的条件"}, {"": 3, "": "", "": "Aₙᵐ = n(n-1)...(n-m+1) Aₙᵐ = n!/(n-m)!"}, {"": 4, "": "", "": ""}]',
ARRAY['公式化思想', '阶乘思想'],
'识别排列类型,套用公式计算',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'选择性必修第六章6.2.2节 P46-55'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-3-01',
'组合数公式法',
'计算技巧',
'{"": "n个不同元素中取出m个元素的组合数", "": "", "": "Cₙᵐ的值"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "n和m的值", "": "m n的条件"}, {"": 3, "": "", "": "Cₙᵐ = Aₙᵐ/Aₘᵐ Cₙᵐ = n!/(m!(n-m)!)"}, {"": 4, "": "", "": "Cₙᵐ = Cₙⁿ"}]',
ARRAY['组合思想', '对称性思想'],
'识别组合类型,运用公式和性质计算',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'选择性必修第六章6.2.4节 P63-73'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-3-1-01',
'二项式展开法',
'解题方法',
'{"": "(a+b)", "": "", "": "(a+b)k项"}',
'[{"": 1, "": "n", "": ""}, {"": 2, "": "", "": "(a+b) = ΣCₙᵏaⁿbᵏ"}, {"": 3, "": "", "": "Tₖ = Cₙᵏaⁿbᵏ"}, {"": 4, "": "", "": ""}]',
ARRAY['展开思想', '通项思想'],
'应用定理,写出通项,计算特定项',
NULL,
'[{"": "", "": "a,b的系数影响", "": ""}]',
3,
'选择性必修第六章6.3.1节 P78-88'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-3-2-01',
'赋值法求系数和',
'解题技巧',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "x=1, x=-1, x=0"}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['赋值思想', '整体思想'],
'巧妙赋值,整体计算',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'选择性必修第六章6.3.2节 P89-99'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-4-01',
'间接计数法',
'解题技巧',
'{"": "", "": "''''''''", "": "......"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['补集思想', '逆向思维'],
'正难则反,计算对立面',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'选择性必修第六章6.2.4节 P81-82'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-5-01',
'特殊位置优先法',
'解题技巧',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['优先思想', '限制思想'],
'特殊优先,一般在后',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'选择性必修第六章6.2.2节 P55-57'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-6-01',
'捆绑法',
'解题技巧',
'{"": "", "": "''''''''", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": "×"}]',
ARRAY['整体思想', '捆绑思想'],
'相邻元素捆绑成整体,分两步排列',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'综合性问题,教材中分布较散'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-2-7-01',
'插空法',
'解题技巧',
'{"": "", "": "''''''''", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": "×"}]',
ARRAY['插空思想', '间隔思想'],
'无限制先排,有限制插空',
NULL,
'[{"": "", "": "", "": "n个元素形成n+1"}]',
4,
'综合性问题,教材中分布较散'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-1-2-01',
'树状图法',
'解题技巧',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['直观思想', '枚举思想'],
'画图列举,直观计数',
NULL,
'[{"": "", "": "", "": ""}]',
1,
'选择性必修第六章6.1节 P22-24'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M6-3-1-02',
'通项公式法',
'解题技巧',
'{"": "", "": "k项", "": "r项xᵏ的项"}',
'[{"": 1, "": "", "": "Tₖ = Cₙᵏaⁿbᵏ"}, {"": 2, "": "", "": "k值"}, {"": 3, "": "k的值", "": "k的取值范围"}, {"": 4, "": "k值代入通项公式计算结果", "": ""}]',
ARRAY['通项思想', '方程思想'],
'写出通项,建立方程,求解验证',
NULL,
'[{"": "k项与k的关系混淆", "": "k项对应Tₖk-1", "": "r项对应Tᵣ = Cₙⁿ¹aⁿʳ¹¹"}]',
3,
'选择性必修第六章6.3.1节 P85-88'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-1-01',
'抽样调查设计选择法',
'决策方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['成本效益分析思想', '优化思想'],
'根据实际问题的特点和要求,在精度和成本之间寻求平衡',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 第9章9.1.1节 P180-181'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-1-02',
'简单随机抽样实施法',
'操作方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['随机性思想', '等概率思想'],
'保证每个个体被抽中的概率相等,避免选择偏差',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第9章9.1.1节 P181-184'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-1-03',
'分层随机抽样设计法',
'设计方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": "使"}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": "nᵢ = (/) × "}, {"": 4, "": "", "": ""}]',
ARRAY['分层思想', '优化思想', '代表性最大化思想'],
'通过合理分层减少抽样误差,提高估计精度',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 第9章9.1.2节 P188-192'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-2-01',
'频率分布表制作法',
'数据整理方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "-", "": ""}, {"": 2, "": "", "": "5-12"}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": "=/1"}]',
ARRAY['分组思想', '频率思想', '统计规律思想'],
'通过分组将杂乱的数据结构化,便于发现分布规律',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第9章9.2.1节 P200-203'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-2-02',
'频率分布直方图绘制法',
'数据可视化方法',
'{"": "", "": "便", "": ""}',
'[{"": 1, "": "", "": "/"}, {"": 2, "": "/", "": "=/="}, {"": 3, "": "", "": "/"}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合思想', '面积表示频率思想'],
'通过面积大小直观反映各组数据的频率分布',
NULL,
'[{"": "", "": "", "": "/"}]',
3,
'必修第二册 第9章9.2.1节 P203-206'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-2-03',
'百分位数计算法',
'计算方法',
'{"": "", "": "", "": "p百分位数使p%"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "i = n × p%", "": "n为数据个数p为百分数80%p=80"}, {"": 3, "": "i的值确定百分位数", "": "i不是整数i的最小整数位置的数据i是整数i项和第i+1"}, {"": 4, "": "", "": ""}]',
ARRAY['位置度量思想', '分位数思想'],
'准确确定位置,注意整数和非整数位置的不同处理方式',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第9章9.2.2节 P210-211'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-2-04',
'集中趋势度量选择法',
'决策方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['中心趋势思想', '稳健性思想', '信息利用最大化思想'],
'根据数据特征和分析目的选择最能代表数据中心位置的指标',
NULL,
'[{"": "使", "": "", "": ""}]',
3,
'必修第二册 第9章9.2.3节 P212-216'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-2-05',
'方差和标准差计算法',
'计算方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": " = - "}, {"": 3, "": "", "": " = = (1/n)(xᵢ-)²"}, {"": 4, "": "", "": " = "}]',
ARRAY['离散程度思想', '平均距离思想'],
'通过数据与平均数的平均偏离程度来描述数据的分散程度',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第9章9.2.4节 P218-220'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-2-06',
'统计图表选择法',
'可视化方法',
'{"": "", "": "便", "": "线"}',
'[{"": 1, "": "", "": "线"}, {"": 2, "": "", "": "线"}, {"": 3, "": "", "": "线"}, {"": 4, "": "", "": "使"}]',
ARRAY['可视化思想', '信息传递思想'],
'根据数据特征和分析目的选择最能有效传递信息的图表类型',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 第9章9.2.1节 P206-208'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-3-01',
'BMI计算与分类法',
'应用计算方法',
'{"": "", "": "BMI并评估健康风险", "": "BMI = (kg)/²(m²)"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "BMI值", "": "BMI = (kg) ÷ ²(m²)"}, {"": 3, "": "BMI值进行分类", "": "<18.518.5-24.024.0-28.028.0"}, {"": 4, "": "", "": ""}]',
ARRAY['指数化思想', '标准化思想'],
'通过BMI指数将身高体重标准化便于评估和比较',
NULL,
'[{"": "", "": "BMI计算公式和分类标准不熟悉", "": ""}]',
2,
'必修第二册 第9章9.3.1节 P1347'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M9-应用-01',
'样本估计总体方法',
'推断方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['统计推断思想', '样本代表性思想'],
'通过随机样本的统计特征来推断未知的总体特征',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 第9章各节应用实例'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-1-01',
'复数分类判断法',
'解题方法',
'{"": "使", "": "", "": "z = a + bi使"}',
'[{"": 1, "": "", "": "z = a + biab"}, {"": 2, "": "", "": "b = 0b 0a = 0b 0"}, {"": 3, "": "", "": ""}]',
ARRAY['分类讨论思想'],
'抓住虚部是否为零的关键判断标准',
NULL,
'[{"": "00", "": "", "": "00"}]',
2,
'必修第二册 第7章7.1.1节 P76 例1'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-1-02',
'复数相等求解法',
'解题方法',
'{"": "", "": "", "": "a + bi = c + di"}',
'[{"": 1, "": "a + bi", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['方程思想'],
'复数相等转化为实部相等和虚部相等两个条件',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 第7章7.1.1节 P76 练习第3题'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-2-01',
'复数模计算法',
'计算技巧',
'{"": "", "": "|z|", "": "z = a + bi|z|"}',
'[{"": 1, "": "a和虚部b", "": "a + bi"}, {"": 2, "": "", "": "|a + bi| = (a² + b²)"}, {"": 3, "": "", "": ""}]',
ARRAY['数形结合思想'],
'利用模的几何意义(点到原点距离)帮助理解',
NULL,
'[{"": "", "": "", "": "|a + bi| = (a² + b²)"}]',
2,
'必修第二册 第7章7.1.2节 P78-79 例2'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-1-2-02',
'共轭复数求法',
'计算技巧',
'{"": "", "": "", "": "z = a + bi"}',
'[{"": 1, "": "a和虚部b", "": ""}, {"": 2, "": "", "": " = a - bi"}, {"": 3, "": "", "": ""}]',
ARRAY['对称思想'],
'共轭复数在复平面上关于实轴对称',
NULL,
'[{"": "", "": "", "": ""}]',
1,
'必修第二册 第7章7.1.2节 P79'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-2-1-01',
'复数加减运算及几何意义',
'解题方法',
'{"": "", "": "", "": "z ± z"}',
'[{"": 1, "": "", "": "(a + bi) ± (c + di) = (a ± c) + (b ± d)i"}, {"": 2, "": "", "": "a + bi形式"}, {"": 3, "": "", "": ""}]',
ARRAY['数形结合思想', '向量思想'],
'复数加减对应向量加减,可以借助几何直观',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 第7章7.2.1节 P82-84 例1、例2'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-2-2-01',
'复数乘除运算(代数形式)',
'计算技巧',
'{"": "", "": "", "": "(a + bi)(c + di) (a + bi) ÷ (c + di)"}',
'[{"": 1, "": "", "": "(a + bi)(c + di) = ac + adi + bci + bdi²"}, {"": 2, "": "i² = -1", "": "i²-1"}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['多项式运算思想'],
'乘法类似多项式乘法,除法关键在分母实数化',
NULL,
'[{"": "i²", "": "", "": "i² = -1"}]',
3,
'必修第二册 第7章7.2.2节 P84-86 例3-例6'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-2-2-02',
'复数除法分母实数化法',
'计算技巧',
'{"": "", "": "", "": "(a + bi) ÷ (c + di) (a + bi)/(c + di)"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "c + di的共轭复数是c - di"}, {"": 3, "": "(c + di)(c - di) = c² + d²", "": "c² + d²"}, {"": 4, "": "", "": ""}]',
ARRAY['有理化思想'],
'类似于分母有理化,关键是利用共轭复数的积为实数',
NULL,
'[{"": "", "": "", "": "c + di的共轭复数是c - di"}]',
3,
'必修第二册 第7章7.2.2节 P85 例5'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-3-1-01',
'复数三角形式互化法',
'方法/技巧',
'{"": "", "": "a + bi和r(cosθ + isinθ)", "": " "}',
'[{"": 1, "": "r = (a² + b²)", "": "r必须为正数"}, {"": 2, "": "θ", "": "cosθ = a/rsinθ = b/r确定θ"}, {"": 3, "": "a = rcosθb = rsinθ", "": "使"}, {"": 4, "": "", "": "r必须为正"}]',
ARRAY['数形结合思想', '转换思想'],
'抓住模和辐角两个关键要素,注意三角形式的判定标准',
NULL,
'[{"": "", "": "", "": "r(cosθ + isinθ)r > 0"}]',
3,
'必修第二册 第7章7.3.1节 P90-93 例1、例2'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-3-2-01',
'复数三角形式乘除运算',
'计算技巧',
'{"": "", "": "", "": "r(cosθ + isinθ) × r(cosθ + isinθ)"}',
'[{"": 1, "": "", "": "r(cosθ + isinθ)r > 0"}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['模与辐角的独立运算思想'],
'模和辐角分别运算,乘法对应乘法和加法,除法对应除法和减法',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 第7章7.3.2节 P93-96 例3-例5'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M7-应用-01',
'复数几何应用法',
'解题方法',
'{"": "", "": "", "": "|z - z| = r"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['数形结合思想', '转换思想'],
'抓住复数与几何的一一对应关系,灵活运用代数和三角形式',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 第7章多处例题'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-1-1-01',
'空间向量加减法运算',
'解题方法',
'{"": "线", "": "", "": "OA + OB = OCOA - OB = BA"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['几何直观', '向量自由平移'],
'将空间向量运算转化为平面向量运算',
NULL,
'[{"": "", "": "", "": ""}]',
1,
'必修1 P8'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-1-1-02',
'空间向量数乘运算',
'计算技巧',
'{"": "", "": "", "": "λaλa为向量"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "|λ|·|a|"}, {"": 3, "": "", "": "λ>0λ<0λ=0"}]',
ARRAY['数形结合'],
'利用数乘运算进行向量伸缩和反向',
NULL,
'[{"": "", "": "", "": ""}]',
1,
'必修1 P8-9'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-1-1-03',
'空间向量共线判断法',
'解题方法',
'{"": "线", "": "a与b的平行关系", "": "a//b或a不平行于b"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "λ使a = λb", "": "λ"}, {"": 3, "": "", "": "λ使a = λb线线"}]',
ARRAY['向量共线定理'],
'利用共线向量定理的代数判别方法',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修1 P10'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-1-1-04',
'空间向量共面判断法',
'解题方法',
'{"": "", "": "p与向量ab的共面关系", "": "(x,y)使p = xa + yb"}',
'[{"": 1, "": "线", "": "ab共线"}, {"": 2, "": "(x,y)使p = xa + yb", "": "线"}, {"": 3, "": "", "": "ab不共线时"}]',
ARRAY['线性组合', '空间分解'],
'利用向量共面的充要条件进行判断',
NULL,
'[{"": "线", "": "", "": "线"}]',
3,
'必修1 P12'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-1-2-01',
'空间向量数量积计算法',
'计算技巧',
'{"": "", "": "a·b的值", "": "|a||b|"}',
'[{"": 1, "": "", "": "|a||b|"}, {"": 2, "": "", "": "[0,π]"}, {"": 3, "": "", "": "a·b = |a||b|cos<a,b>"}]',
ARRAY['投影思想', '数形结合'],
'利用数量积的几何意义进行计算',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修1 P12'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-1-2-02',
'向量垂直判断法',
'解题方法',
'{"": "", "": "ab或证明垂直关系", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "a·b = 0"}, {"": 3, "": "", "": ""}]',
ARRAY['代数判别几何'],
'将几何垂直关系转化为代数运算',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修1 P12'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-1-2-03',
'向量夹角求解法',
'解题方法',
'{"": "", "": "<a,b>", "": ""}',
'[{"": 1, "": "", "": "a·b = |a||b|cosθ"}, {"": 2, "": "", "": "|a| = (a·a)|b| = (b·b)"}, {"": 3, "": "", "": "cosθ = (a·b)/(|a||b|)θ[0,π]"}]',
ARRAY['数形结合'],
'通过数量积反求夹角的余弦值',
NULL,
'[{"": "线", "": "", "": "[0,π]线(0,π/2]"}]',
3,
'必修1 P13'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-2-1-01',
'空间向量基本定理应用法',
'解题方法',
'{"": "", "": "线", "": "{a,b,c}p = xa + yb + zc"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "线", "": "x,y,z的方程"}, {"": 3, "": "", "": "线(x,y,z)"}]',
ARRAY['线性表示', '空间分解'],
'利用向量基本定理进行空间分解',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修1 P16-17'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-3-1-01',
'空间向量坐标运算方法',
'计算技巧',
'{"": "", "": "", "": "a=(x,y,z)b=(x,y,z)"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['坐标法', '代数化'],
'将几何运算转化为代数运算',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修1 P24-25'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-3-1-02',
'空间两点间距离公式应用',
'计算技巧',
'{"": "", "": "", "": "P(x,y,z)P(x,y,z)PP"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "Δx=x-xΔy=y-yΔz=z-z"}, {"": 3, "": "", "": " = [(x-x)² + (y-y)² + (z-z)²]"}]',
ARRAY['数形结合'],
'利用坐标法将距离问题转化为代数运算',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修1 P26'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-4-1-01',
'直线向量参数方程法',
'解题方法',
'{"": "线", "": "线", "": "线l过点Aul上任意点P"}',
'[{"": 1, "": "线", "": ""}, {"": 2, "": "", "": "OP = OA + tutR"}, {"": 3, "": "", "": "线线"}]',
ARRAY['参数化思想'],
'用参数表示直线上点的位置',
NULL,
'[{"": "", "": "线", "": "t的几何意义"}]',
3,
'必修1 P31-32'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-4-1-02',
'平面向量表示法',
'解题方法',
'{"": "", "": "", "": "ABC内任意点P的向量表示"}',
'[{"": 1, "": "", "": "线"}, {"": 2, "": "", "": "OP = OA + xAB + yAC"}, {"": 3, "": "", "": "P在平面内都能找到对应的(x,y)"}]',
ARRAY['参数化思想', '平面分解'],
'用两个参数表示平面内点的位置',
NULL,
'[{"": "线", "": "", "": "线"}]',
3,
'必修1 P32-33'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-4-1-03',
'平面法向量求解法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "线", "": ""}, {"": 2, "": "", "": "n=(x,y,z)n·a=0n·b=0"}, {"": 3, "": "线", "": ""}]',
ARRAY['垂直关系', '线性方程组'],
'通过垂直条件建立方程求解法向量',
NULL,
'[{"": "", "": "线", "": ""}]',
3,
'必修1 P33'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-4-2-01',
'点到直线距离向量法',
'解题方法',
'{"": "线", "": "线", "": "P到直线l的距离l有方向向量u和点A"}',
'[{"": 1, "": "线", "": ""}, {"": 2, "": "线", "": "AP"}, {"": 3, "": "", "": " = (|AP|² - (AP·u)²)"}]',
ARRAY['投影思想', '勾股定理'],
'利用投影和勾股定理求距离',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修1 P38'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-4-2-02',
'点到平面距离向量法',
'解题方法',
'{"": "", "": "", "": "P到平面α的距离αn和点A"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "AP"}, {"": 3, "": "", "": " = |AP·n|/|n|"}]',
ARRAY['投影思想'],
'利用法向量的投影求距离',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修1 P39'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-4-2-03',
'异面直线夹角向量法',
'解题方法',
'{"": "线", "": "线", "": "线lluu"}',
'[{"": 1, "": "线", "": ""}, {"": 2, "": "", "": "cosθ = |u·u|/(|u||u|)"}, {"": 3, "": "", "": "线(0,π/2]"}]',
ARRAY['向量夹角'],
'将直线夹角转化为向量夹角',
NULL,
'[{"": "", "": "线", "": "线"}]',
3,
'必修1 P41'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-4-2-04',
'直线与平面夹角向量法',
'解题方法',
'{"": "线", "": "线", "": "线l与平面α的夹角l有方向向量uαn"}',
'[{"": 1, "": "线", "": ""}, {"": 2, "": "", "": "cos<u,n> = (u·n)/(|u||n|)"}, {"": 3, "": "线", "": "θsinθ = |cos<u,n>|"}]',
ARRAY['向量夹角', '三角函数'],
'利用法向量将线面夹角转化为线线夹角',
NULL,
'[{"": "sin和cos关系", "": "", "": "线线"}]',
4,
'必修1 P42'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M1-4-2-05',
'平面夹角向量法',
'解题方法',
'{"": "", "": "", "": "αβnn"}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": "cosθ = |n·n|/(|n||n|)"}, {"": 3, "": "", "": ""}]',
ARRAY['法向量'],
'将平面夹角转化为法向量夹角',
NULL,
'[{"": "", "": "", "": "[0,π/2]"}]',
4,
'必修1 P43'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-1-01',
'几何体结构特征分析法',
'解题方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['分类讨论思想', '空间想象能力'],
'抓住几何体的核心结构特征,特别是底面、侧面、侧棱的关系',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 第8章8.1.1节 P2-3'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-1-02',
'斜二测画法绘制步骤',
'作图方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": "x轴和y轴成45°z轴垂直水平面"}, {"": 2, "": "", "": "线y轴平行的线段长度减半"}, {"": 3, "": "", "": "线"}, {"": 4, "": "", "": "线线"}]',
ARRAY['空间想象能力', '数形结合思想'],
'掌握坐标变换规则,注意比例关系的变化',
NULL,
'[{"": "", "": "", "": "x轴与y轴成45°y方向长度为原长的一半z方向长度不变"}]',
3,
'必修第二册 第8章8.1.2节 P5-7'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-2-01',
'柱体体积计算法',
'计算方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "S", "": "S=πr²"}, {"": 3, "": "h", "": ""}, {"": 4, "": "V=Sh计算", "": ""}]',
ARRAY['公式化思想', '转换思想'],
'体积计算的关键是确定底面积和高',
NULL,
'[{"": "", "": "", "": ""}]',
2,
'必修第二册 第8章8.1.3节 P8-9'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-2-02',
'锥体体积计算法',
'计算方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "S", "": "S=πr²"}, {"": 3, "": "h", "": ""}, {"": 4, "": "V=(1/3)Sh计算", "": "1/3"}]',
ARRAY['公式化思想', '转换思想'],
'锥体体积是同底同高柱体体积的1/3',
NULL,
'[{"": "1/3", "": "", "": "V=(1/3)Sh"}]',
2,
'必修第二册 第8章8.1.3节 P10-11'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-2-03',
'台体体积计算法',
'计算方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": ""}, {"": 2, "": "SS", "": ""}, {"": 3, "": "h", "": ""}, {"": 4, "": "V=(1/3)h(S+S+SS)", "": ""}]',
ARRAY['公式化思想', '转换思想'],
'台体体积公式可以看作是柱体和锥体体积公式的推广',
NULL,
'[{"": "", "": "", "": "V=(1/3)h(S+S+SS)SS"}]',
3,
'必修第二册 第8章8.1.3节 P12'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-3-01',
'球的表面积和体积计算法',
'计算方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "r", "": "dr=d/2"}, {"": 2, "": "S=4πr²", "": "r的平方"}, {"": 3, "": "V=(4/3)πr³", "": "r的立方和系数4/3"}]',
ARRAY['公式化思想'],
'记住两个公式注意r的幂次和系数',
NULL,
'[{"": "", "": "", "": "S=4πr²r平方V=(4/3)πr³r立方"}]',
2,
'必修第二册 第8章8.1.3节 P13'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-4-01',
'平面基本性质应用法',
'证明方法',
'{"": "线", "": "线", "": "线线"}',
'[{"": 1, "": "", "": "线"}, {"": 2, "": "", "": "1线2线"}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['逻辑推理思想', '公理化思想'],
'熟练掌握三个基本公理,灵活运用',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第8章8.2节 P18-20'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-5-01',
'空间平行关系判定法',
'判定方法',
'{"": "线线线", "": "", "": "线线"}',
'[{"": 1, "": "", "": "线线线"}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}, {"": 4, "": "", "": ""}]',
ARRAY['逻辑推理思想', '转化思想'],
'根据问题类型选择合适的判定定理,注意定理条件的完整性',
NULL,
'[{"": "", "": "", "": ""}]',
4,
'必修第二册 第8章8.3节 P22-28'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-6-01',
'异面直线所成角的计算法',
'计算方法',
'{"": "线", "": "线", "": "线"}',
'[{"": 1, "": "线", "": "线"}, {"": 2, "": "线", "": "使线"}, {"": 3, "": "线", "": "线"}, {"": 4, "": "", "": "线(0°,90°]"}]',
ARRAY['转化思想', '空间想象能力'],
'通过平移将空间问题转化为平面问题',
NULL,
'[{"": "", "": "线", "": "线线(0°,90°]"}]',
4,
'必修第二册 第8章8.4.1节 P32-34'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-6-02',
'直线与平面垂直的判定法',
'判定方法',
'{"": "线", "": "线", "": "线l垂直于平面α"}',
'[{"": 1, "": "线", "": "线"}, {"": 2, "": "线线", "": "线"}, {"": 3, "": "", "": "线线线"}]',
ARRAY['逻辑推理思想', '转化思想'],
'关键是找到平面内的两条相交直线并证明垂直关系',
NULL,
'[{"": "线线", "": "", "": "线线"}]',
4,
'必修第二册 第8章8.4.2节 P35-38'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-6-03',
'平面与平面垂直的判定法',
'判定方法',
'{"": "", "": "", "": "αβ"}',
'[{"": 1, "": "线", "": "线"}, {"": 2, "": "线", "": "线线"}, {"": 3, "": "", "": "线"}]',
ARRAY['逻辑推理思想', '转化思想'],
'将面面垂直问题转化为线面垂直问题',
NULL,
'[{"": "", "": "", "": "线线"}]',
4,
'必修第二册 第8章8.4.3节 P39-42'
);
INSERT INTO kg.methods (id, name, type, scenarios, steps, math_ideas, strategy, prerequisite_methods, common_errors, difficulty, location)
VALUES (
'M8-应用-01',
'空间几何体的表面积计算法',
'计算方法',
'{"": "", "": "", "": ""}',
'[{"": 1, "": "", "": "+"}, {"": 2, "": "", "": ""}, {"": 3, "": "", "": ""}]',
ARRAY['分解组合思想', '公式化思想'],
'将复杂几何体分解为简单图形分别计算面积',
NULL,
'[{"": "", "": "", "": ""}]',
3,
'必修第二册 第8章8.1.3节 P13-15'
);
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-1-E01',
'例题',
'{"": "", "": " ", "": "7.1.1 ", "": 76, "": "1"}',
'{"": " m z=m+1+(m-1)i ", "": ["(1) ", "(2) ", "(3) "], "": " m z=m+1+(m-1)i \n(1) \n(2) \n(3) ", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2, "3": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E01', 'K7-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E01', 'K7-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E01', 'M7-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-1-P01',
'练习题',
'{"": "", "": " ", "": "7.1.1 ", "": 80, "": " 1"}',
'{"": ":", "": ["$-2+\\frac{1}{3}i, \\sqrt{2}+i, \\frac{\\sqrt{2}}{2}, -\\sqrt{3}i, i, 0.$"], "": ":\n$-2+\\frac{1}{3}i, \\sqrt{2}+i, \\frac{\\sqrt{2}}{2}, -\\sqrt{3}i, i, 0.$", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-P01', 'K7-1-1-01', '主要考查');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-1-P03',
'练习题',
'{"": "", "": " ", "": "7.1.1 ", "": 80, "": " 3"}',
'{"": "$x,y$的值:", "": ["(1)$(x+y)+(y-1)i=(2x+3y)+(2y+1)i$;", "(2)$(x+y-3)+(x-2)i=0.$"], "": "$x,y$的值:\n(1)$(x+y)+(y-1)i=(2x+3y)+(2y+1)i$;\n(2)$(x+y-3)+(x-2)i=0.$", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-P03', 'K7-1-1-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-P03', 'K7-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-P03', 'M7-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-2-E02',
'例题',
'{"": "", "": " ", "": "7.1.2 ", "": 78, "": "2"}',
'{"": " $z_1=4+3i, z_2=4-3i$.", "": ["(1) $z_1, z_2$ ;", "(2) $z_1, z_2$ ."], "": " $z_1=4+3i, z_2=4-3i$.\n(1) $z_1, z_2$ ;\n(2) $z_1, z_2$ .", "": null}',
'{"": "", "": ["", "", ""], "": ["", ""]}',
'{"": 2, "": {"1": 1, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E02', 'K7-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E02', 'K7-1-1-03', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E02', 'K7-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E02', 'K7-1-2-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E02', 'M7-应用-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E02', 'M7-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E02', 'M7-1-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-2-E03',
'例题',
'{"": "", "": " ", "": "7.1.2 ", "": 79, "": "3"}',
'{"": " $z \\in \\mathbf{C}$, $z$ $Z$, $Z$ ?", "": ["(1) $|z|=1$;", "(2) $1<|z|<2$."], "": " $z \\in \\mathbf{C}$, $z$ $Z$, $Z$ ?\n(1) $|z|=1$;\n(2) $1<|z|<2$.", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E03', 'K7-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E03', 'K7-1-2-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E03', 'M7-应用-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-H01',
'习题',
'{"": "", "": " ", "": " 7.1", "": 80, "": " 1"}',
'{"": "?,;,.", "": ["(1) $-\\sqrt{2}$ ;", "(2) $-\\sqrt{2}$ ;", "(3) $-\\sqrt{2}$ ."], "": "?,;,.\n(1) $-\\sqrt{2}$ ;\n(2) $-\\sqrt{2}$ ;\n(3) $-\\sqrt{2}$ .", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 1, "3": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-H01', 'K7-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-H01', 'K7-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-H01', 'M7-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-H02',
'习题',
'{"": "", "": " ", "": " 7.1", "": 80, "": " 2"}',
'{"": " $m$ , $(m^2-5m+6)+(m^2-3m)i$ ?", "": ["(1) ;", "(2) ;", "(3) ."], "": " $m$ , $(m^2-5m+6)+(m^2-3m)i$ ?\n(1) ;\n(2) ;\n(3) .", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 3, "2": 2, "3": 3}, "": "1"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-H02', 'K7-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-H02', 'K7-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-H02', 'M7-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-1-E01',
'例题',
'{"": "", "": " ", "": "7.2.1 ", "": 83, "": "1"}',
'{"": "$(5-6i)+(-2-i)-(3+4i)$", "": [], "": "$(5-6i)+(-2-i)-(3+4i)$", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-1-E01', 'K7-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-1-E01', 'K7-2-1-03', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-1-E01', 'M7-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-1-E02',
'例题',
'{"": "", "": " ", "": "7.2.1 ", "": 84, "": "2"}',
'{"": ", $Z_1(x_1, y_1)$, $Z_2(x_2, y_2)$ .", "": [], "": ", $Z_1(x_1, y_1)$, $Z_2(x_2, y_2)$ .", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-1-E02', 'K7-2-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-1-E02', 'K7-1-2-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-1-E02', 'M7-2-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-1-E02', 'M7-应用-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-2-E03',
'例题',
'{"": "", "": " ", "": "7.2.2 ", "": 85, "": "3"}',
'{"": " $(1-2i)(3+4i)(-2+i)$", "": [], "": " $(1-2i)(3+4i)(-2+i)$", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E03', 'K7-2-2-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-2-E03', 'M7-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-2-E04',
'例题',
'{"": "", "": " ", "": "7.2.2 ", "": 85, "": "4"}',
'{"": ":", "": ["(1) $(2+3i)(2-3i)$;", "(2) $(1+i)^2$."], "": ":\n(1) $(2+3i)(2-3i)$;\n(2) $(1+i)^2$.", "": null}',
'{"": "", "": ["", "", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E04', 'K7-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E04', 'K7-2-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E04', 'K7-1-2-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-2-E04', 'M7-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-2-E05',
'例题',
'{"": "", "": " ", "": "7.2.2 ", "": 86, "": "5"}',
'{"": "$(1+2i)\\div(3-4i)$", "": [], "": "$(1+2i)\\div(3-4i)$", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E05', 'K7-2-2-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E05', 'K7-2-2-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-2-E05', 'M7-2-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-2-E06',
'例题',
'{"": "", "": " ", "": "7.2.2 ", "": 86, "": "6"}',
'{"": ":", "": ["(1) $x^2+2=0$;", "(2) $ax^2+bx+c=0$, $a, b, c \\in \\mathbf{R}$, $a \\neq 0, \\Delta=b^2-4ac<0$."], "": ":\n(1) $x^2+2=0$;\n(2) $ax^2+bx+c=0$, $a, b, c \\in \\mathbf{R}$, $a \\neq 0, \\Delta=b^2-4ac<0$.", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": {"1": 2, "2": 4}, "": "(2)"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E06', 'K7-2-2-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E06', 'K7-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-2-E06', 'M7-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-1-E01',
'例题',
'{"": "", "": " ", "": "7.3.1 ", "": 91, "": "1"}',
'{"": ",:", "": ["(1) $\\frac{1}{2}+\\frac{\\sqrt{3}}{2}i$;", "(2) $1-i$."], "": ",:\n(1) $\\frac{1}{2}+\\frac{\\sqrt{3}}{2}i$;\n(2) $1-i$.", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 3, "2": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E01', 'K7-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E01', 'K7-3-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E01', 'K7-1-2-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E01', 'K7-1-2-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-1-E01', 'M7-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-1-E02',
'例题',
'{"": "", "": " ", "": "7.3.1 ", "": 92, "": "2"}',
'{"": ":", "": ["(1) $\\cos \\pi + i\\sin \\pi$;", "(2) $6(\\cos \\frac{11\\pi}{6} + i\\sin \\frac{11\\pi}{6})$."], "": ":\n(1) $\\cos \\pi + i\\sin \\pi$;\n(2) $6(\\cos \\frac{11\\pi}{6} + i\\sin \\frac{11\\pi}{6})$.", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 1, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E02', 'K7-3-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E02', 'K7-3-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E02', 'K7-1-2-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-1-E02', 'M7-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-2-E03',
'例题',
'{"": "", "": " ", "": "7.3.2 ", "": 94, "": "3"}',
'{"": " $z_1=\\frac{3}{2}(\\cos \\frac{\\pi}{6} + i\\sin \\frac{\\pi}{6})$, $z_2=2(\\cos \\frac{\\pi}{3} + i\\sin \\frac{\\pi}{3})$", "": [" $z_1z_2$"], "": " $z_1=\\frac{3}{2}(\\cos \\frac{\\pi}{6} + i\\sin \\frac{\\pi}{6})$, $z_2=2(\\cos \\frac{\\pi}{3} + i\\sin \\frac{\\pi}{3})$\n求 $z_1z_2$", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E03', 'K7-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E03', 'K7-3-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E03', 'K7-1-2-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E03', 'M7-3-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E03', 'M7-3-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E03', 'M7-应用-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-2-E04',
'例题',
'{"": "", "": " ", "": "7.3.2 ", "": 95, "": "4"}',
'{"": "7.3-8,$\\vec{OZ}$$1+i$,$\\vec{OZ}$$O$按逆时针方向旋转$120^\\circ$,$\\vec{OZ''}$", "": ["$\\vec{OZ''}$()"], "": "7.3-8,$\\vec{OZ}$$1+i$,$\\vec{OZ}$$O$按逆时针方向旋转$120^\\circ$,$\\vec{OZ''}$\n求向量$\\vec{OZ''}$()", "": ""}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E04', 'K7-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E04', 'K7-1-2-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E04', 'K7-3-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E04', 'M7-3-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E04', 'M7-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-2-E05',
'例题',
'{"": "", "": " ", "": "7.3.2 ", "": 95, "": "5"}',
'{"": "$4(\\cos \\frac{4\\pi}{3}+i\\sin \\frac{4\\pi}{3}) \\div [2(\\cos \\frac{5\\pi}{6}+i\\sin \\frac{5\\pi}{6})]$,", "": [], "": "$4(\\cos \\frac{4\\pi}{3}+i\\sin \\frac{4\\pi}{3}) \\div [2(\\cos \\frac{5\\pi}{6}+i\\sin \\frac{5\\pi}{6})]$,", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E05', 'K7-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E05', 'K7-3-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E05', 'M7-3-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-R01',
'复习题',
'{"": "", "": " ", "": "7", "": 101, "": " 1"}',
'{"": "", "": ["(1) $a+bi$与$c+di$的积是实数的充要条件是( ).\n (A) $ad+bc=0$\n (B) $ac+bd=0$\n (C) $ac=bd$\n (D) $ad=bc$", "(2) $i-\\frac{5}{2}$( ).\n (A) $i+2$\n (B) $i-2$\n (C) $-2-i$\n (D) $2-i$"], "": "\n(1) $a+bi$与$c+di$的积是实数的充要条件是( ).\n (A) $ad+bc=0$\n (B) $ac+bd=0$\n (C) $ac=bd$\n (D) $ad=bc$\n(2) $i-\\frac{5}{2}$( ).\n (A) $i+2$\n (B) $i-2$\n (C) $-2-i$\n (D) $2-i$", "": null}',
'{"": "", "": ["", "", ""], "": ["", ""]}',
'{"": 3, "": {"1": 4, "2": 1}, "": "(1)(2)"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-R01', 'K7-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-R01', 'K7-2-2-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-R01', 'K7-1-2-03', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-R01', 'M7-2-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-R01', 'M7-1-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-1-1-E01',
'例题',
'{"": "", "": " ", "": "4.1.1 ", "": 9, "": "1"}',
'{"": "", "": ["(1) 1, 3, 5, 7, __, __, 11, ...;", "(2) 2, 4, 6, 8, __, __, 12, ...;", "(3) -1, 1, -1, 1, __, __, -1, ...;", "(4) 1, 1/2, 1/3, 1/4, __, __, 1/7, ..."], "": "\n(1) 1, 3, 5, 7, __, __, 11, ...;\n(2) 2, 4, 6, 8, __, __, 12, ...;\n(3) -1, 1, -1, 1, __, __, -1, ...;\n(4) 1, 1/2, 1/3, 1/4, __, __, 1/7, ...", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": {"1": 1, "2": 1, "3": 1, "4": 1}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-1-E01', 'K4-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-1-E01', 'K4-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-1-E01', 'K4-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-1-1-E01', 'M4-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-1-1-E02',
'例题',
'{"": "", "": " ", "": "4.1.1 ", "": 10, "": "2"}',
'{"": "{an}11an+1 = an + 2n + 1 (n 1)5", "": [], "": "{an}11an+1 = an + 2n + 1 (n 1)5", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-1-E02', 'K4-1-1-05', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-1-E02', 'K4-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-1-E02', 'K4-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-1-1-E02', 'M4-1-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-1-1-E02', 'M4-1-1-03');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-1-1-P01',
'练习题',
'{"": "", "": " ", "": "4.1.1 ", "": 12, "": " 1"}',
'{"": "使4", "": ["(1) 3, 6, 9, 12;", "(2) 0, -2, -4, -6;", "(3) 1/2, 1/4, 1/6, 1/8;", "(4) 1, 3, 5, 7"], "": "使4\n(1) 3, 6, 9, 12;\n(2) 0, -2, -4, -6;\n(3) 1/2, 1/4, 1/6, 1/8;\n(4) 1, 3, 5, 7", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 1, "": {"1": 1, "2": 1, "3": 1, "4": 1}, "": "1"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-1-P01', 'K4-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-1-P01', 'K4-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-1-1-P01', 'M4-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-2-1-E01',
'例题',
'{"": "", "": " ", "": "4.2.1 ", "": 17, "": "1"}',
'{"": "", "": ["(1) 4, 7, 10, 13, 16, ...;", "(2) 10, 8, 6, 4, 2, ...;", "(3) 1, 2, 4, 8, 16, ...;", "(4) a, a + d, a + 2d, a + 3d, ... (a, d为常数)"], "": "\n(1) 4, 7, 10, 13, 16, ...;\n(2) 10, 8, 6, 4, 2, ...;\n(3) 1, 2, 4, 8, 16, ...;\n(4) a, a + d, a + 2d, a + 3d, ... (a, d为常数)", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": {"1": 1, "2": 1, "3": 1, "4": 1}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-1-E01', 'K4-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-1-E01', 'K4-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-2-1-E01', 'M4-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-2-1-E02',
'例题',
'{"": "", "": " ", "": "4.2.1 ", "": 18, "": "2"}',
'{"": "{an}a1 = 2d = 310", "": [], "": "{an}a1 = 2d = 310", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-1-E02', 'K4-2-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-1-E02', 'K4-2-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-2-1-E02', 'M4-2-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-2-2-E01',
'例题',
'{"": "", "": " ", "": "4.2.2 n项和", "": 24, "": "1"}',
'{"": "{an}a1 = 3d = 2S10", "": [], "": "{an}a1 = 3d = 2S10", "": null}',
'{"": "", "": ["n项和计算", ""], "": ["", ""]}',
'{"": 1, "": "n项和公式的直接应用"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-2-E01', 'K4-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-2-E01', 'K4-2-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-2-2-E01', 'M4-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-3-1-E01',
'例题',
'{"": "", "": " ", "": "4.3.1 ", "": 32, "": "1"}',
'{"": "", "": ["(1) 2, 4, 8, 16, 32, ...;", "(2) 1, -1/2, 1/4, -1/8, 1/16, ...;", "(3) 3, 3, 3, 3, 3, ...;", "(4) a, ar, ar², ar³, ... (a, r为常数r 0)"], "": "\n(1) 2, 4, 8, 16, 32, ...;\n(2) 1, -1/2, 1/4, -1/8, 1/16, ...;\n(3) 3, 3, 3, 3, 3, ...;\n(4) a, ar, ar², ar³, ... (a, r为常数r 0)", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": {"1": 1, "2": 1, "3": 1, "4": 1}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-3-1-E01', 'K4-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-3-1-E01', 'K4-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-3-1-E01', 'M4-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-3-1-E02',
'例题',
'{"": "", "": " ", "": "4.3.1 ", "": 34, "": "2"}',
'{"": "{an}a1 = 3q = 26", "": [], "": "{an}a1 = 3q = 26", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-3-1-E02', 'K4-3-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-3-1-E02', 'K4-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-3-1-E02', 'M4-3-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-3-2-E01',
'例题',
'{"": "", "": " ", "": "4.3.2 n项和", "": 39, "": "1"}',
'{"": "{an}a1 = 2q = 3S5", "": [], "": "{an}a1 = 2q = 3S5", "": null}',
'{"": "", "": ["n项和计算", ""], "": ["", ""]}',
'{"": 1, "": "n项和公式的直接应用"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-3-2-E01', 'K4-3-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-3-2-E01', 'K4-3-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-3-2-E01', 'M4-3-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-4-1-E01',
'例题',
'{"": "", "": " ", "": "4.4 ", "": 50, "": "1"}',
'{"": "1 + 3 + 5 + ... + (2n-1) = n² (n N*)", "": [], "": "1 + 3 + 5 + ... + (2n-1) = n² (n N*)", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-4-1-E01', 'K4-4-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-4-1-E01', 'K4-1-1-06', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-4-1-E01', 'M4-4-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-4-1-E02',
'例题',
'{"": "", "": " ", "": "4.4 ", "": 53, "": "2"}',
'{"": "{an}an = a1 + (n-1)d", "": [], "": "{an}an = a1 + (n-1)d", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-4-1-E02', 'K4-4-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-4-1-E02', 'K4-2-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-4-1-E02', 'K4-4-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-4-1-E02', 'M4-4-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-4-1-E03',
'例题',
'{"": "", "": " ", "": "4.4 ", "": 54, "": "3"}',
'{"": "{an}an = a1·q^(n-1)", "": [], "": "{an}an = a1·q^(n-1)", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-4-1-E03', 'K4-4-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-4-1-E03', 'K4-3-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-4-1-E03', 'K4-4-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-4-1-E03', 'M4-4-1-03');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-2-H03',
'习题',
'{"": "", "": " ", "": "4.2 ", "": 30, "": "4.2 3"}',
'{"": "{an}a3 = 5a7 = 13a10和S10", "": [], "": "{an}a3 = 5a7 = 13a10和S10", "": null}',
'{"": "", "": ["", "", "n项和计算"], "": ["", ""]}',
'{"": 3, "": "1010"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-H03', 'K4-2-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-H03', 'K4-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-2-H03', 'K4-2-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-2-H03', 'M4-2-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-2-H03', 'M4-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-3-H05',
'习题',
'{"": "", "": " ", "": "4.3 ", "": 45, "": "4.3 5"}',
'{"": "{an}a2 = 6a5 = 162a1和q", "": [], "": "{an}a2 = 6a5 = 162a1和q", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-3-H05', 'K4-3-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-3-H05', 'K4-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-3-H05', 'M4-3-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-1-H08',
'习题',
'{"": "", "": " ", "": "4.1 ", "": 15, "": "4.1 8"}',
'{"": "{an}n项和Sn = 2n² + n", "": [], "": "{an}n项和Sn = 2n² + n", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": "n项和与通项公式的关系an = Sn - Sn-1"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-H08', 'K4-1-1-06', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-H08', 'K4-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-1-H08', 'K4-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-1-H08', 'M4-1-1-05');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T4-综合-01',
'综合题',
'{"": "", "": " ", "": "", "": 63, "": " 3"}',
'{"": "{an}n项和为SnS3 = 6S6 = 21", "": ["(1) {an}", "(2) {an}n项和Sn", "(3) {an²}n项和Tn"], "": "{an}n项和为SnS3 = 6S6 = 21\n(1) {an}\n(2) {an}n项和Sn\n(3) {an²}n项和Tn", "": null}',
'{"": "", "": ["", "", "n项和", ""], "": ["", "", ""]}',
'{"": 4, "": {"1": 3, "2": 2, "3": 4}, "": "3"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-综合-01', 'K4-2-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-综合-01', 'K4-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-综合-01', 'K4-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-综合-01', 'K4-1-1-06', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T4-综合-01', 'K2-3-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-综合-01', 'M4-2-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-综合-01', 'M4-2-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-综合-01', 'M4-2-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T4-综合-01', 'M4-1-1-05');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-1-1-E01',
'例题',
'{"": "", "": "1 ", "": "1.1.1 线", "": 98, "": "1"}',
'{"": ",ABCD,AC外一点O作射线OA,OB,OC,OD,线E,F,G,H,使OE/OA=OF/OB=OG/OC=OH/OD=k", "": [":E,F,G,H四点共面"], "": ",ABCD,AC外一点O作射线OA,OB,OC,OD,线E,F,G,H,使OE/OA=OF/OB=OG/OC=OH/OD=k.:E,F,G,H四点共面.", "": "ABCD和点O的几何图形"}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-1-E01', 'K1-1-1-13', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-1-E01', 'K1-1-1-08', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-1-E01', 'K1-1-1-05', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-1-1-E01', 'M1-1-1-04');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-1-1-E01', 'M1-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-1-2-E02',
'例题',
'{"": "", "": "1 ", "": "1.1.2 ", "": 192, "": "2"}',
'{"": ",ABCD-A''B''C''D'',AB=5,AD=3,AA''=7,BAD=60°,BAA''=DAA''=45°", "": ["(1) AB·AD;", "(2) AC''(0.1)"], "": ",ABCD-A''B''C''D'',AB=5,AD=3,AA''=7,BAD=60°,BAA''=DAA''=45°.:(1) AB·AD;(2) AC''(0.1).", "": ""}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-2-E02', 'K1-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-2-E02', 'K1-1-2-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-2-E02', 'K1-1-2-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-2-E02', 'K1-1-2-08', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-2-E02', 'K1-1-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-1-2-E02', 'M1-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-1-2-E02', 'M1-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-1-2-E02', 'M1-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-1-2-E03',
'例题',
'{"": "", "": "1 ", "": "1.1.2 ", "": 210, "": "3"}',
'{"": ",m,n是平面α内的两条相交直线lm,ln", "": [":lα"], "": ",m,n是平面α内的两条相交直线lm,ln,:lα.", "": "线"}',
'{"": "", "": ["线", ""], "": ["", ""]}',
'{"": 4, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-2-E03', 'K1-1-2-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-2-E03', 'K1-1-1-13', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-1-2-E03', 'K1-1-1-08', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-1-2-E03', 'M1-1-2-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-1-2-E03', 'M1-1-1-04');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-2-1-E01',
'例题',
'{"": "", "": "1 ", "": "1.2 ", "": 363, "": "1"}',
'{"": ",M是四面体OABC的棱BC的中点,N在线段OM上,P在线段AN上,MN=1/2ON,AP=3/4AN", "": ["OA,OB,OC表示OP"], "": ",M是四面体OABC的棱BC的中点,N在线段OM上,P在线段AN上,MN=1/2ON,AP=3/4AN.OA,OB,OC表示OP.", "": "M,N,P的位置图"}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-2-1-E01', 'K1-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-2-1-E01', 'K1-1-1-08', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-2-1-E01', 'K1-1-1-05', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-2-1-E01', 'M1-2-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-2-1-E01', 'M1-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-3-1-E01',
'例题',
'{"": "", "": "1 ", "": "1.3.1 ", "": 541, "": "1"}',
'{"": ",OABC-D''A''B''C'',OA=3,OC=4,OD''=2,{1/3OA,1/4OC,1/2OD},Oxyz", "": ["(1) D'',C,A'',B'';", "(2) A''B'',B''B,A''C'',AC的坐标"], "": ",OABC-D''A''B''C'',OA=3,OC=4,OD''=2,{1/3OA,1/4OC,1/2OD},Oxyz.(1) D'',C,A'',B'';(2) A''B'',B''B,A''C'',AC的坐标.", "": ""}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-3-1-E01', 'K1-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-3-1-E01', 'K1-1-1-11', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-3-1-E01', 'K1-3-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-3-1-E01', 'K1-1-1-08', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-3-1-E01', 'M1-3-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-3-1-E01', 'M1-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-3-1-E02',
'例题',
'{"": "", "": "1 ", "": "1.3.2 ", "": 632, "": "2"}',
'{"": ",ABCD-A''B''C''D'',E,F分别是BB,DB", "": ["EFDA"], "": ",ABCD-A''B''C''D'',E,F分别是BB,DB.EFDA.", "": "E,F的位置图"}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-3-1-E02', 'K1-1-2-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-3-1-E02', 'K1-3-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-3-1-E02', 'K1-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-3-1-E02', 'M1-1-2-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-3-1-E02', 'M1-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-3-1-P01',
'练习题',
'{"": "", "": "1 ", "": "1.3.2 ", "": 681, "": "1"}',
'{"": "a=(-3,2,5),b=(1,5,-1)", "": ["(1) a+b;", "(2) 6a;", "(3) 3a-b;", "(4) a·b"], "": "a=(-3,2,5),b=(1,5,-1):(1) a+b;(2) 6a;(3) 3a-b;(4) a·b.", "": null}',
'{"": "", "": ["", "", ""], "": ["", ""]}',
'{"": 1, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-3-1-P01', 'K1-3-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-3-1-P01', 'M1-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-4-1-E01',
'例题',
'{"": "", "": "1 ", "": "1.4.1 线", "": 876, "": "1"}',
'{"": ",ABCD-ABCD,AB=4,BC=3,CC=2,M是AB的中点.D为原点,DA,DC,DD线x轴y轴z轴,", "": ["(1) BCCB;", "(2) MCA"], "": ",ABCD-ABCD,AB=4,BC=3,CC=2,M是AB的中点.D为原点,DA,DC,DD线x轴y轴z轴,.(1) BCCB;(2) MCA.", "": ""}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 1, "2": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-1-E01', 'K1-4-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-1-E01', 'K1-1-2-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-1-E01', 'K1-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-4-1-E01', 'M1-4-1-03');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-4-1-E01', 'M1-1-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-4-2-E01',
'例题',
'{"": "", "": "1 ", "": "1.4.2 ", "": 1093, "": "6"}',
'{"": ",1ABCD-ABCD,E为线段AB,F为线段AB的中点", "": ["(1) B到直线AC;", "(2) 线FC到平面AEC"], "": ",1ABCD-ABCD,E为线段AB,F为线段AB的中点.(1) B到直线AC;(2) 线FC到平面AEC.", "": "E,F的位置图"}',
'{"": "", "": ["线", ""], "": ["", ""]}',
'{"": 4, "": {"1": 3, "2": 4}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E01', 'K1-4-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E01', 'K1-3-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E01', 'K1-4-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E01', 'K1-4-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-4-2-E01', 'M1-4-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-4-2-E01', 'M1-4-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-4-2-E02',
'例题',
'{"": "", "": "1 ", "": "1.4.2 ", "": 1158, "": "7"}',
'{"": ",1ABCD中,M,N分别为BC,AD的中点", "": ["线AM和CN夹角的余弦值"], "": ",1ABCD中,M,N分别为BC,AD的中点.线AM和CN夹角的余弦值.", "": "M,N的位置图"}',
'{"": "", "": ["线", ""], "": ["", ""]}',
'{"": 4, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E02', 'K1-4-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E02', 'K1-1-2-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E02', 'K1-2-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-4-2-E02', 'M1-4-2-03');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-4-2-E02', 'M1-1-2-03');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T1-4-2-E03',
'例题',
'{"": "", "": "1 ", "": "1.4.2 ", "": 1206, "": "8"}',
'{"": ",ABC-ABC,AC=CB=2,AA=3,ACB=90°,P为BC的中点,Q,R分别在棱AA,BB,AQ=2AQ,BR=2RB", "": ["PQR与平面ABC"], "": ",ABC-ABC,AC=CB=2,AA=3,ACB=90°,P为BC的中点,Q,R分别在棱AA,BB,AQ=2AQ,BR=2RB.PQR与平面ABC.", "": "P,Q,R的位置图"}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E03', 'K1-4-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E03', 'K1-4-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T1-4-2-E03', 'K1-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-4-2-E03', 'M1-4-2-05');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T1-4-2-E03', 'M1-4-1-03');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-1-E01',
'例题',
'{"": "", "": "7 ", "": "7.1.1 ", "": 49, "": "1"}',
'{"": "457.1-1[2516920146453015]", "": ["(1) ", "(2) "], "": "457.1-1[2516920146453015]\n(1) \n(2) ", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 1, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E01', '概率基础', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E01', 'K7-1-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E01', '古典概型法');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E01', 'M7-1-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E01', 'M7-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-1-E02',
'例题',
'{"": "", "": "7 ", "": "7.1.1 ", "": 49, "": "2"}',
'{"": "", "": ["(1) ", "(2) "], "": "\n(1) \n(2) ", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 1, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E02', '概率基础', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E02', 'K7-1-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E02', '古典概型法');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E02', 'M7-1-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E02', 'M7-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-1-E03',
'例题',
'{"": "", "": "7 ", "": "7.1.1 ", "": 51, "": "1"}',
'{"": "5321", "": ["(1) 12", "(2) 12"], "": "5321\n(1) 12\n(2) 12", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 3, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E03', 'K7-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E03', '排列组合', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-E03', 'K7-1-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E03', 'M7-1-1-03');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E03', 'M7-1-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-E03', 'M7-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-1-P01',
'练习题',
'{"": "", "": "7 ", "": "7.1.1 ", "": 53, "": " 1"}',
'{"": " A B P(A)=0.3, P(B)=0.6", "": [" P(B|A) P(A|B) "], "": " A B P(A)=0.3, P(B)=0.6\n根据事件包含关系的意义及条件概率的意义 P(B|A) P(A|B) ", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-P01', 'K7-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-1-P01', '事件关系', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-1-P01', 'M7-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-2-E01',
'例题',
'{"": "", "": "7 ", "": "7.1.2 ", "": 54, "": ""}',
'{"": "a个红球和b个蓝球的袋子中1", "": ["2"], "": "a个红球和b个蓝球的袋子中1\n第2次摸到红球的概率是多大", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E01', 'K7-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E01', 'K7-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E01', 'M7-1-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-2-E02',
'例题',
'{"": "", "": "7 ", "": "7.1.2 ", "": 55, "": "4"}',
'{"": "AB两家餐厅11A餐厅2A餐厅的概率为0.61B餐厅2A餐厅的概率为0.8", "": ["2A餐厅用餐的概率"], "": "AB两家餐厅11A餐厅2A餐厅的概率为0.61B餐厅2A餐厅的概率为0.8\n计算王同学第2天去A餐厅用餐的概率", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E02', 'K7-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E02', 'K7-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E02', 'M7-1-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-2-E03',
'例题',
'{"": "", "": "7 ", "": "7.1.2 ", "": 55, "": "5"}',
'{"": "316%235%12325%30%45%", "": ["(1) ;", "(2) i(i=1,2,3)"], "": "316%235%12325%30%45%\n(1) ;\n(2) i(i=1,2,3)", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": {"1": 3, "2": 5}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E03', 'K7-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E03', 'K7-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E03', 'K7-1-2-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E03', 'M7-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E03', 'M7-1-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-1-2-E04',
'例题',
'{"": "", "": "7 ", "": "7.1.2 ", "": 56, "": "6"}',
'{"": "0101100010.90.11100.950.0501", "": ["(1) 01;", "*(2) 01."], "": "0101100010.90.11100.950.0501\n(1) 01;\n*(2) 01.", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": {"1": 3, "2": 5}, "": "2"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E04', 'K7-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E04', 'K7-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-1-2-E04', 'K7-1-2-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E04', 'M7-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-1-2-E04', 'M7-1-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-2-E01',
'例题',
'{"": "", "": "7 ", "": "7.2.2 ", "": 65, "": "1"}',
'{"": "5%1X=1X=0", "": ["X的分布列"], "": "5%1X=1X=0\n求X的分布列", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E01', 'K7-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E01', 'K7-2-2-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-2-E01', 'M7-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-2-E02',
'例题',
'{"": "", "": "7 ", "": "7.2.2 ", "": 66, "": "2"}',
'{"": "20057.2-4[120250360440530]", "": ["2001X的分布列P(X4)"], "": "20057.2-4[120250360440530]\n从这200名学生中任意选取1人X的分布列P(X4)", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E02', 'K7-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E02', '古典概型', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-2-E02', 'M7-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-2-2-E03',
'例题',
'{"": "", "": "7 ", "": "7.2.2 ", "": 67, "": "3"}',
'{"": "10A品牌3台B品牌7台2", "": ["2A品牌台数的分布列"], "": "10A品牌3台B品牌7台22A品牌台数的分布列", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E03', 'K7-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-2-2-E03', '组合数', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-2-2-E03', 'M7-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-1-E01',
'例题',
'{"": "", "": "7 ", "": "7.3.1 ", "": 68, "": "1"}',
'{"": "1100.8", "": ["1X的均值是多少"], "": "1100.81X的均值是多少", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E01', 'K7-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E01', 'K7-2-2-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E01', 'K7-3-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-1-E01', 'M7-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-1-E02',
'例题',
'{"": "", "": "7 ", "": "7.3.1 ", "": 68, "": "2"}',
'{"": "X", "": ["X的均值"], "": "XX的均值", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E02', 'K7-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E02', '均匀分布', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-1-E02', 'M7-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-1-E03',
'例题',
'{"": "", "": "7 ", "": "7.3.1 ", "": 70, "": "3"}',
'{"": "ABC歌名的概率及猜对时获得相应的公益基金如表7.3-3[A歌曲猜对概率0.81000B歌曲猜对概率0.62000C歌曲猜对概率0.43000]", "": ["ABC的顺序猜X的分布列及均值"], "": "ABC歌名的概率及猜对时获得相应的公益基金如表7.3-3[A歌曲猜对概率0.81000B歌曲猜对概率0.62000C歌曲猜对概率0.43000]\n规则如下ABC的顺序猜X的分布列及均值", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E03', 'K7-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E03', 'K7-2-2-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-1-E03', 'K7-1-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-1-E03', 'M7-2-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-1-E03', 'M7-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-2-E01',
'例题',
'{"": "", "": "7 ", "": "7.3.2 ", "": 74, "": "5"}',
'{"": "", "": ["X的方差"], "": "X的方差", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E01', 'K7-3-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E01', 'K7-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E01', 'M7-3-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-3-2-E02',
'例题',
'{"": "", "": "7 ", "": "7.3.2 ", "": 75, "": "6"}',
'{"": "AB两种股票7.3-97.3-10[7.3-9A-10.100.320.67.3-10B00.310.420.3]", "": ["(1) ", "(2) "], "": "AB两种股票7.3-97.3-10[7.3-9A-10.100.320.67.3-10B00.310.420.3]\n(1) \n(2) ", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": {"1": 3, "2": 4}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E02', 'K7-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E02', 'K7-3-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-3-2-E02', 'K7-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E02', 'M7-3-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-3-2-E02', 'M7-3-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-4-1-E01',
'例题',
'{"": "", "": "7 ", "": "7.4.1 ", "": 79, "": "1"}',
'{"": "10", "": ["(1) 5", "(2) [0.4, 0.6]"], "": "10\n(1) 5\n(2) [0.4, 0.6]", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-1-E01', 'K7-4-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-1-E01', 'K7-4-1-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-1-E01', 'M7-4-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-1-E01', 'M7-4-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-4-1-E02',
'例题',
'{"": "", "": "7 ", "": "7.4.1 ", "": 79, "": "2"}',
'{"": "7.4-20,1,2,...,10X表示小球最后落入格子的号码", "": ["X的分布列"], "": "7.4-20,1,2,...,10X表示小球最后落入格子的号码\n求X的分布列", "": ""}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-1-E02', 'K7-4-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-1-E02', 'M7-4-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-1-E02', 'M7-4-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-4-1-E03',
'例题',
'{"": "", "": "7 ", "": "7.4.1 ", "": 80, "": "3"}',
'{"": "0.60.4", "": ["3253"], "": "0.60.43253", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-1-E03', 'K7-4-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-1-E03', '决策分析', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-1-E03', 'M7-4-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-1-E03', 'M7-4-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-4-2-E01',
'例题',
'{"": "", "": "7 ", "": "7.4.2 ", "": 82, "": ""}',
'{"": "100844X", "": ["X的分布列"], "": "100844XX的分布列", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-2-E01', 'K7-4-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-2-E01', 'K7-4-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-2-E01', 'M7-4-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-4-2-E02',
'例题',
'{"": "", "": "7 ", "": "7.4.2 ", "": 83, "": "4"}',
'{"": "505", "": [""], "": "505", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-2-E02', 'K7-4-2-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-2-E02', 'M7-4-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-4-2-E03',
'例题',
'{"": "", "": "7 ", "": "7.4.2 ", "": 83, "": "5"}',
'{"": "30310", "": ["1"], "": "303101", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 4, "": "使"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-4-2-E03', 'K7-4-2-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-4-2-E03', 'M7-4-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T7-5-1-E01',
'例题',
'{"": "", "": "7 ", "": "7.5 ", "": 91, "": ""}',
'{"": "5030min3634min4X和骑自行车用时Y都服从正态分布", "": ["(1) XY的分布中的参数", "(2) (1)X和Y的分布密度曲线", "(3) 38min可用34min可用"], "": "5030min3634min4X和骑自行车用时Y都服从正态分布\n(1) XY的分布中的参数\n(2) (1)X和Y的分布密度曲线\n(3) 38min可用34min可用", "": "线"}',
'{"": "", "": ["", "", ""], "": ["", ""]}',
'{"": 5, "": {"1": 2, "2": 3, "3": 5}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-5-1-E01', 'K7-5-1-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-5-1-E01', 'K7-5-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-5-1-E01', 'K7-5-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T7-5-1-E01', '决策分析', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-5-1-E01', '参数估计');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-5-1-E01', 'M7-5-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T7-5-1-E01', 'M7-5-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-1-1-E01',
'例题',
'{"": "", "": " ", "": "6.1 ", "": 49, "": "1"}',
'{"": "AB两所大学各有一些自己感兴趣的强项专业6.1-1\nA大学\nB大学\n如果这名同学只能选一个专业", "": [""], "": "AB两所大学各有一些自己感兴趣的强项专业6.1-1\nA大学\nB大学\n如果这名同学只能选一个专业", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 1, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E01', 'K6-1-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-E01', 'M6-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-1-1-E02',
'例题',
'{"": "", "": " ", "": "6.1 ", "": 51, "": "2"}',
'{"": "30241", "": [""], "": "30241", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 1, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E02', 'K6-1-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-E02', 'M6-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-1-1-E03',
'例题',
'{"": "", "": " ", "": "6.1 ", "": 52, "": "3"}',
'{"": "142332", "": ["(1) 1", "(2) 1231"], "": "142332\n(1) 1\n(2) 1231", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 1, "2": 1}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E03', 'K6-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E03', 'K6-1-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-E03', 'M6-1-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-E03', 'M6-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-1-1-E04',
'例题',
'{"": "", "": " ", "": "6.1 ", "": 53, "": "4"}',
'{"": "32", "": [""], "": "32", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E04', 'K6-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E04', 'K6-2-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-E04', 'M6-1-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-E04', 'M6-1-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-1-1-E05',
'例题',
'{"": "", "": " ", "": "6.1 ", "": 54, "": "5"}',
'{"": "3A~G或U~Z1~9", "": [""], "": "3A~G或U~Z1~9", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E05', 'K6-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E05', 'K6-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E05', 'K6-1-1-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-E05', 'M6-1-1-03');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-1-E01',
'例题',
'{"": "", "": " ", "": "6.2.1 ", "": 62, "": "1"}',
'{"": "61", "": [""], "": "61", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-1-E01', 'K6-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-1-E01', 'K6-1-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-1-E01', 'M6-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-1-E02',
'例题',
'{"": "", "": " ", "": "6.2.1 ", "": 63, "": "2"}',
'{"": "53153", "": ["(1) ", "(2) "], "": "531\n学校食堂的一个窗口共卖5种菜3", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-1-E02', 'K6-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-1-E02', 'K6-1-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-1-E02', 'M6-1-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-1-E02', 'M6-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-2-E03',
'例题',
'{"": "", "": " ", "": "6.2.2 ", "": 68, "": "3"}',
'{"": "", "": ["(1) A³", "(2) A", "(3) A/A", "(4) A × A²"], "": "\n(1) A³\n(2) A\n(3) A/A\n(4) A × A²", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-E03', 'K6-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-E03', 'K6-2-2-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-2-E03', 'M6-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-2-E04',
'例题',
'{"": "", "": " ", "": "6.2.2 ", "": 69, "": "4"}',
'{"": "0~910", "": [""], "": "0~910", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-E04', 'K6-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-E04', 'K6-1-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-E04', 'K6-1-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-2-E04', 'M6-2-5-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-4-E06',
'例题',
'{"": "", "": " ", "": "6.2.4 ", "": 74, "": "6"}',
'{"": "", "": ["(1) C³", "(2) C", "(3) C¹", "(4) C"], "": "\n(1) C³\n(2) C\n(3) C¹\n(4) C", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E06', 'K6-2-4-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E06', 'K6-2-4-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E06', 'M6-2-3-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-4-E07',
'例题',
'{"": "", "": " ", "": "6.2.4 ", "": 75, "": "7"}',
'{"": "1009821003", "": ["(1) ", "(2) 31", "(3) 31"], "": "1009821003\n(1) \n(2) 31\n(3) 31", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": {"1": 1, "2": 2, "3": 3}, "": "3"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E07', 'K6-2-4-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E07', 'K6-2-4-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E07', 'K6-1-1-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E07', 'K6-2-4-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E07', 'K6-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E07', 'M6-2-3-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E07', 'M6-1-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E07', 'M6-2-4-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-3-1-E01',
'例题',
'{"": "", "": " ", "": "6.3.1 ", "": 90, "": "1"}',
'{"": "(x + 1/x)", "": [""], "": "(x + 1/x)", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-1-E01', 'K6-3-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-3-1-E01', 'M6-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-3-1-E02',
'例题',
'{"": "", "": " ", "": "6.3.1 ", "": 91, "": "2"}',
'{"": "", "": ["(1) (1+2x)4", "(2) (2x-1/x)x²"], "": "\n(1) (1+2x)4\n(2) (2x-1/x)x²", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 3}, "": "2"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-1-E02', 'K6-3-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-3-1-E02', 'M6-3-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-3-2-E03',
'例题',
'{"": "", "": " ", "": "6.3.2 ", "": 96, "": "3"}',
'{"": "(a+b)", "": [""], "": "(a+b)", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-2-E03', 'K6-3-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-2-E03', 'K6-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-3-2-E03', 'M6-3-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-1-1-P01',
'练习题',
'{"": "", "": " ", "": "6.1 ", "": 55, "": " 1"}',
'{"": "\n(1) 251421\n(2) A村去B村的道路有3条B村去C村的道路有2条", "": ["(1) ______", "(2) A村经B村去C村线______"], "": "\n(1) 251421______\n(2) A村去B村的道路有3条B村去C村的道路有2条A村经B村去C村线______", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": {"1": 1, "2": 1}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-P01', 'K6-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-P01', 'K6-1-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-P01', 'M6-1-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-P01', 'M6-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-2-P01',
'练习题',
'{"": "", "": " ", "": "6.2.2 ", "": 71, "": " 1"}',
'{"": "", "": ["(1) A¹²", "(2) A", "(3) A - 15A", "(4) A/A"], "": "\n(1) A¹²\n(2) A\n(3) A - 15A\n(4) A/A", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-P01', 'K6-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-P01', 'K6-2-2-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-2-P01', 'M6-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-4-P01',
'练习题',
'{"": "", "": " ", "": "6.2.4 ", "": 76, "": " 1"}',
'{"": "", "": ["(1) C²", "(2) C", "(3) C³ - C²", "(4) 3C³ - 2C²"], "": "\n(1) C²\n(2) C\n(3) C³ - C²\n(4) 3C³ - 2C²", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-P01', 'K6-2-4-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-P01', 'K6-2-4-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-P01', 'M6-2-3-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-3-1-P01',
'练习题',
'{"": "", "": " ", "": "6.3.1 ", "": 92, "": " 1"}',
'{"": "", "": ["(1) (p+q)", "(2) (2a+3b)3"], "": "\n(1) (p+q)\n(2) (2a+3b)3", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-1-P01', 'K6-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-1-P01', 'K6-3-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-3-1-P01', 'M6-3-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-3-1-P01', 'M6-3-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-1-1-E01',
'例题',
'{"": "", "": "2 线", "": "2.1.1 ", "": 59, "": "1"}',
'{"": "2.1-6A(3, 2)B(-4, 1)C(0, -1)", "": ["线AB, BC, CA的斜率", "线"], "": "2.1-6A(3, 2)B(-4, 1)C(0, -1)线AB, BC, CA的斜率线", "": "A(3,2)B(-4,1)C(0,-1)"}',
'{"": "线", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-1-E01', 'K2-1-1-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-1-E01', 'K2-1-1-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-1-E01', 'K2-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-1-E01', 'M2-1-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-1-E01', 'M2-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-1-2-E01',
'例题',
'{"": "", "": "2 线", "": "2.1.2 线", "": 61, "": "2"}',
'{"": "A(2, 3), B(-4, 0), P(-3, 1), Q(-1,2)", "": ["线 AB PQ的位置关系", ""], "": "A(2, 3), B(-4, 0), P(-3, 1), Q(-1,2)线 AB PQ的位置关系", "": "线AB和PQ"}',
'{"": "线", "": [""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E01', 'K2-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E01', 'K2-1-1-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-2-E01', 'M2-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-2-E01', 'M2-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-1-2-E02',
'例题',
'{"": "", "": "2 线", "": "2.1.2 线", "": 61, "": "3"}',
'{"": "ABCD的四个顶点分别为A(0, 0), B(2, -1), C(4, 2), D(2, 3)", "": ["ABCD的形状", ""], "": "ABCD的四个顶点分别为A(0, 0), B(2, -1), C(4, 2), D(2, 3)ABCD的形状", "": "ABCD"}',
'{"": "线", "": ["", ""], "": ["", "", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E02', 'K2-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E02', 'K2-1-1-03', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E02', 'K2-1-2-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-2-E02', 'M2-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-2-E02', 'M2-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-1-2-E03',
'例题',
'{"": "", "": "2 线", "": "2.1.2 线", "": 62, "": "4"}',
'{"": "A(-6, 0), B(3, 6), P(0, 3), Q(6, -6)", "": ["线 AB PQ "], "": "A(-6, 0), B(3, 6), P(0, 3), Q(6, -6)线 AB PQ ", "": null}',
'{"": "线", "": [""], "": ["", ""]}',
'{"": 2, "": "-1"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E03', 'K2-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E03', 'K2-1-1-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-2-E03', 'M2-1-2-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-2-E03', 'M2-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-1-2-E04',
'例题',
'{"": "", "": "2 线", "": "2.1.2 线", "": 62, "": "5"}',
'{"": "A(5, -1), B(1, 1), C(2, 3)", "": ["ABC的形状"], "": "A(5, -1), B(1, 1), C(2, 3)ABC的形状", "": "ABC"}',
'{"": "线", "": ["", ""], "": ["", "", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E04', 'K2-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-1-2-E04', 'K2-1-1-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-2-E04', 'M2-1-2-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-1-2-E04', 'M2-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-2-1-E01',
'例题',
'{"": "", "": "2 线", "": "2.2.1 线", "": 65, "": "1"}',
'{"": "线l经过点P0(-2, 3)α=45°", "": ["线l的点斜式方程", "线l"], "": "线l经过点P0(-2, 3)α=45°线l的点斜式方程线l", "": "(-2,3)1线"}',
'{"": "线", "": [""], "": ["", "", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-1-E01', 'K2-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-1-E01', 'K2-1-1-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-1-E01', 'K2-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-1-E01', 'M2-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-2-1-E02',
'例题',
'{"": "", "": "2 线", "": "2.2.1 线", "": 66, "": "2"}',
'{"": "线l1: y=k1x+b1, l2: y=k2x+b2", "": ["(1) l1//l2的条件是什么", "(2) l1l2的条件是什么"], "": "线l1: y=k1x+b1, l2: y=k2x+b2(1) l1//l2的条件是什么(2) l1l2的条件是什么", "": null}',
'{"": "线", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-1-E02', 'K2-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-1-E02', 'K2-2-1-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-1-E02', 'K2-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-1-E02', 'K2-2-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-1-E02', 'M2-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-1-E02', 'M2-1-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-2-2-E01',
'例题',
'{"": "", "": "2 线", "": "2.2.2 线", "": 68, "": "3"}',
'{"": "2.2-5线l与x轴的交点为A(a,0)y轴的交点为B(0,b)a0, b0", "": ["线l的方程"], "": "2.2-5线l与x轴的交点为A(a,0)y轴的交点为B(0,b)a0, b0线l的方程", "": "线"}',
'{"": "线", "": [""], "": ["", "", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-2-E01', 'K2-2-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-2-E01', 'K2-2-2-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-2-E01', 'M2-2-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-2-E01', 'M2-2-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-2-2-E02',
'例题',
'{"": "", "": "2 线", "": "2.2.2 线", "": 68, "": "4"}',
'{"": "ABC的三个顶点A(-5,0), B(3,-3), C(0,2)", "": ["BC所在直线的方程", "线AM所在直线的方程"], "": "ABC的三个顶点A(-5,0), B(3,-3), C(0,2)BC所在直线的方程线AM所在直线的方程", "": "ABC及中线AM"}',
'{"": "线", "": ["", "线"], "": ["", "", ""]}',
'{"": 3, "": {"1": 2, "2": 3}, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-2-E02', 'K2-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-2-E02', 'K2-1-1-04', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-2-E02', 'K2-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-2-E02', 'K2-1-1-04', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-2-E02', '中点坐标公式', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-2-E02', 'M2-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-2-3-E01',
'例题',
'{"": "", "": "2 线", "": "2.2.3 线", "": 70, "": "5"}',
'{"": "线A(6, -4)-4/3", "": ["线"], "": "线A(6, -4)-4/3线", "": null}',
'{"": "线", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-3-E01', 'K2-2-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-3-E01', 'K2-2-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-3-E01', 'M2-2-3-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-3-E01', 'M2-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-2-3-E02',
'例题',
'{"": "", "": "2 线", "": "2.2.3 线", "": 71, "": "6"}',
'{"": "线l的一般式方程x-2y+6=0", "": ["线l的斜率以及它在x轴与y轴上的截距", ""], "": "线l的一般式方程x-2y+6=0线l的斜率以及它在x轴与y轴上的截距", "": "线"}',
'{"": "线", "": ["", ""], "": ["", "", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-3-E02', 'K2-2-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-2-3-E02', 'K2-2-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-2-3-E02', 'M2-2-3-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-3-1-E01',
'例题',
'{"": "", "": "2 线", "": "2.3.1 线", "": 76, "": "1"}',
'{"": "线l1: 3x+4y-2=0, l2: 2x+y+2=0", "": ["", ""], "": "线l1: 3x+4y-2=0, l2: 2x+y+2=0", "": "线M(-2,2)"}',
'{"": "线", "": [""], "": ["", "", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-1-E01', 'K2-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-1-E01', 'K2-2-3-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-3-1-E01', 'M2-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-3-1-E02',
'例题',
'{"": "", "": "2 线", "": "2.3.1 线", "": 76, "": "2"}',
'{"": "线", "": ["(1) l1: x-y=0, l2: 3x+3y-10=0", "(2) l1: 3x-y+4=0, l2: 6x-2y-1=0", "(3) l1: 3x+4y-5=0, l2: 6x+8y-10=0"], "": "线(1) l1: x-y=0, l2: 3x+3y-10=0(2) l1: 3x-y+4=0, l2: 6x-2y-1=0(3) l1: 3x+4y-5=0, l2: 6x+8y-10=0", "": null}',
'{"": "线", "": ["", ""], "": ["", "", ""]}',
'{"": 3, "": {"1": 2, "2": 3, "3": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-1-E02', 'K2-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-1-E02', 'K2-1-2-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-1-E02', 'K2-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-1-E02', 'K2-3-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-1-E02', 'K2-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-1-E02', 'K2-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-3-1-E02', 'M2-3-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-3-1-E02', 'M2-1-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-3-2-E01',
'例题',
'{"": "", "": "2 线", "": "2.3.2 ", "": 78, "": "3"}',
'{"": " A(-1, 2), B(2, 7) x P", "": ["使 |PA|=|PB|", " |PA| "], "": " A(-1, 2), B(2, 7) x P使 |PA|=|PB| |PA| ", "": null}',
'{"": "", "": [""], "": ["", "", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-2-E01', 'K2-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-2-E01', '解方程', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-3-2-E01', 'M2-3-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-3-2-E02',
'例题',
'{"": "", "": "2 线", "": "2.3.2 ", "": 78, "": "4"}',
'{"": "线", "": [""], "": "线", "": "ABCD"}',
'{"": "", "": [""], "": ["", "", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-2-E02', 'K2-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-2-E02', '坐标法基本思想', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-3-2-E02', 'M2-3-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-3-3-E01',
'例题',
'{"": "", "": "2 线", "": "2.3.3 线", "": 82, "": "5"}',
'{"": " P(-1, 2) 线 l: 3x=2 ", "": ["线"], "": " P(-1, 2) 线 l: 3x=2 ", "": null}',
'{"": "", "": ["线"], "": ["", ""]}',
'{"": 2, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-3-E01', 'K2-3-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-3-E01', 'K2-2-3-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T2-3-3-E01', 'M2-3-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-3-3-E02',
'例题',
'{"": "", "": "2 线", "": "2.3.3 线", "": 82, "": "6"}',
'{"": "ABC的三个顶点分别是A(1, 3), B(3, 1), C(-1,0)", "": ["ABC的面积"], "": "ABC的三个顶点分别是A(1, 3), B(3, 1), C(-1,0)ABC的面积", "": "ABC及高线"}',
'{"": "", "": [""], "": ["", "", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-3-E02', 'K2-3-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-3-E02', 'K2-1-1-04', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-3-E02', '三角形面积公式', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-3-4-E01',
'例题',
'{"": "", "": "2 线", "": "2.3.4 线", "": 83, "": "7"}',
'{"": "线l1: 2x-7y-8=0, l2: 6x-21y-1=0", "": ["l1与l2间的距离"], "": "线l1: 2x-7y-8=0, l2: 6x-21y-1=0l1与l2间的距离", "": null}',
'{"": "", "": ["线"], "": ["", "", ""]}',
'{"": 3, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-4-E01', 'K2-3-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-4-E01', 'K2-3-2-01', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-3-4-E02',
'例题',
'{"": "", "": "2 线", "": "2.3.4 线", "": 83, "": "8"}',
'{"": "线Ax+By+C1=0Ax+By+C2=0d = |C1-C2|/(A²+B²)", "": ["线"], "": "线Ax+By+C1=0Ax+By+C2=0d = |C1-C2|/(A²+B²)", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-4-E02', 'K2-3-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-3-4-E02', 'K2-3-2-01', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-4-1-E01',
'例题',
'{"": "", "": "2 线", "": "2.4.1 ", "": 88, "": "1"}',
'{"": "A(2,-3), 5M1(5, -7), M2(-2,-1)", "": ["", ""], "": "A(2,-3), 5M1(5, -7), M2(-2,-1)", "": "M1M2的位置"}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E01', 'K2-4-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E01', 'K2-1-1-04', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-4-1-E02',
'例题',
'{"": "", "": "2 线", "": "2.4.1 ", "": 88, "": "2"}',
'{"": "ABC的三个顶点分别是A(5,1), B(7, -3), C(2,-8)", "": ["ABC的外接圆的标准方程"], "": "ABC的三个顶点分别是A(5,1), B(7, -3), C(2,-8)ABC的外接圆的标准方程", "": "ABC及外接圆"}',
'{"": "", "": [""], "": ["", "", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E02', 'K2-4-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E02', 'K2-1-1-04', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E02', '外心定义', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-4-1-E03',
'例题',
'{"": "", "": "2 线", "": "2.4.1 ", "": 89, "": "3"}',
'{"": "C的圆经过A(1,1), B(2,-2)C在直线l: x-y+1=0", "": [""], "": "C的圆经过A(1,1), B(2,-2)C在直线l: x-y+1=0", "": ""}',
'{"": "", "": [""], "": ["", "", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E03', 'K2-4-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E03', 'K2-1-1-04', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E03', 'K2-2-3-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-1-E03', '垂直平分线性质', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-4-2-E01',
'例题',
'{"": "", "": "2 线", "": "2.4.2 ", "": 92, "": "4"}',
'{"": "O(0,0), M1(1,1), M2(4,2)", "": [""], "": "O(0,0), M1(1,1), M2(4,2)", "": null}',
'{"": "", "": ["", ""], "": ["", "", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-2-E01', 'K2-4-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-2-E01', 'K2-4-1-01', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-4-2-E02',
'例题',
'{"": "", "": "2 线", "": "2.4.2 ", "": 93, "": "5"}',
'{"": "线AB的端点B的坐标是(4,3)A在圆(x+1)²+y²=4", "": ["线AB的中点M的轨迹方程"], "": "线AB的端点B的坐标是(4,3)A在圆(x+1)²+y²=4线AB的中点M的轨迹方程", "": ""}',
'{"": "", "": [""], "": ["", "", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-2-E02', 'K2-4-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-2-E02', '中点坐标公式', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-4-2-E02', '轨迹方程', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-5-1-E01',
'例题',
'{"": "", "": "2 线", "": "2.5.1 线", "": 96, "": "1"}',
'{"": "线l: 3x+y-6=0C的圆x²+y²-2y-4=0", "": ["线l与圆C的位置关系", "线l被圆C所截得的弦长"], "": "线l: 3x+y-6=0C的圆x²+y²-2y-4=0线l与圆C的位置关系线l被圆C所截得的弦长", "": "线"}',
'{"": "线", "": ["", ""], "": ["", "", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E01', 'K2-5-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E01', 'K2-5-1-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E01', 'K2-3-2-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E01', 'K2-4-1-01', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-5-1-E02',
'例题',
'{"": "", "": "2 线", "": "2.5.1 线", "": 97, "": "2"}',
'{"": "P(2,1)O: x²+y²=1线l", "": ["线"], "": "P(2,1)O: x²+y²=1线l线", "": "线"}',
'{"": "线", "": ["线"], "": ["", "", ""]}',
'{"": 4, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E02', 'K2-5-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E02', 'K2-3-2-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E02', 'K2-4-1-01', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-5-1-E03',
'例题',
'{"": "", "": "2 线", "": "2.5.1 线", "": 99, "": "3"}',
'{"": "2.5-3AB=20mOP=4m4m需要用一根支柱支撑", "": ["A2P2的高度(0.01m)"], "": "2.5-3AB=20mOP=4m4m需要用一根支柱支撑A2P2的高度(0.01m)", "": ""}',
'{"": "", "": ["", ""], "": ["", "", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E03', 'K2-4-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E03', 'K2-5-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E03', '实际应用建模', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-5-1-E04',
'例题',
'{"": "", "": "2 线", "": "2.5.1 线", "": 99, "": "4"}',
'{"": "20km的圆形区域内西40km处30km处", "": ["沿线"], "": "20km的圆形区域内西40km处30km处沿线", "": "线"}',
'{"": "", "": ["", ""], "": ["", "", ""]}',
'{"": 4, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E04', 'K2-5-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E04', 'K2-3-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-1-E04', '实际应用建模', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-5-2-E01',
'例题',
'{"": "", "": "2 线", "": "2.5.2 ", "": 101, "": "5"}',
'{"": "C1: x²+y²+2x+8y-8=0C2: x²+y²-4x-4y-2=0", "": ["C1与圆C2的位置关系"], "": "C1: x²+y²+2x+8y-8=0C2: x²+y²-4x-4y-2=0C1与圆C2的位置关系", "": ""}',
'{"": "", "": [""], "": ["", "", ""]}',
'{"": 3, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-2-E01', 'K2-5-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-2-E01', 'K2-4-2-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-2-E01', 'K2-1-1-04', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T2-5-2-E02',
'例题',
'{"": "", "": "2 线", "": "2.5.2 ", "": 102, "": "6"}',
'{"": "O的直径AB=4M与点A的距离是它与点B的距离的2", "": ["M的轨迹", "O的位置关系"], "": "O的直径AB=4M与点A的距离是它与点B的距离的2M的轨迹O的位置关系", "": "O及动点M轨迹"}',
'{"": "", "": ["", ""], "": ["", "", ""]}',
'{"": 5, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-2-E02', 'K2-5-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-2-E02', 'K2-4-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T2-5-2-E02', '轨迹方程', '辅助涉及');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-1-1-E01',
'例题',
'{"": "", "": "5 ", "": "5.1.1 ", "": 66, "": "1"}',
'{"": "线 s(t) = 2t² + 3t - 1m", "": ["(1) t = 1s t = 3s ", "(2) t = 2s "], "": "线 s(t) = 2t² + 3t - 1m\n(1) t = 1s t = 3s \n(2) t = 2s ", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-1-E01', 'K5-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-1-E01', '函数计算', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-1-E01', 'K5-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-1-E01', 'K5-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-1-E01', '求导运算', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-1-1-E01', 'M5-1-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-1-1-E01', 'M5-1-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-1-1-E01', 'M5-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-1-2-E01',
'例题',
'{"": "", "": "5 ", "": "5.1.2 ", "": 74, "": "2"}',
'{"": " f(x) = x² x = 1 ", "": [], "": " f(x) = x² x = 1 ", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": {}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-2-E01', 'K5-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-2-E01', '极限运算', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-1-2-E01', 'M5-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-1-2-E02',
'例题',
'{"": "", "": "5 ", "": "5.1.2 ", "": 76, "": "3"}',
'{"": "线 y = x² (1, 1) 线", "": [], "": "线 y = x² (1, 1) 线", "": null}',
'{"": "", "": ["线"], "": ["", ""]}',
'{"": 3, "": {}, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-2-E02', 'K5-1-1-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-2-E02', 'K5-1-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-2-E02', '直线方程', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-1-2-E02', 'M5-1-1-03');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-1-2-E02', 'M5-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-2-1-E01',
'例题',
'{"": "", "": "5 ", "": "5.2.1 ", "": 82, "": "4"}',
'{"": "", "": ["(1) f(x) = x³", "(2) f(x) = sin x", "(3) f(x) = 2ˣ", "(4) f(x) = ln x"], "": "\n(1) f(x) = x³\n(2) f(x) = sin x\n(3) f(x) = 2ˣ\n(4) f(x) = ln x", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": {"1": 1, "2": 1, "3": 2, "4": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-E01', 'K5-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-E01', '幂函数', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-E01', 'K5-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-E01', '三角函数', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-E01', 'K5-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-E01', '指数函数', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-E01', 'K5-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-E01', '对数函数', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-1-E01', 'M5-2-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-1-E01', 'M5-2-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-1-E01', 'M5-2-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-1-E01', 'M5-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-2-2-E01',
'例题',
'{"": "", "": "5 ", "": "5.2.2 ", "": 88, "": "5"}',
'{"": "", "": ["(1) f(x) = x³ + 2x - 1", "(2) f(x) = x² · sin x", "(3) f(x) = (x² + 1)/(x - 1)"], "": "\n(1) f(x) = x³ + 2x - 1\n(2) f(x) = x² · sin x\n(3) f(x) = (x² + 1)/(x - 1)", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 3, "3": 4}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-2-E01', 'K5-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-2-E01', 'K5-2-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-2-E01', 'K5-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-2-E01', 'K5-2-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-2-E01', 'K5-2-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-2-E01', 'K5-2-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-2-E01', 'M5-2-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-2-E01', 'M5-2-2-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-2-E01', 'M5-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-2-3-E01',
'例题',
'{"": "", "": "5 ", "": "5.2.3 ", "": 95, "": "6"}',
'{"": "", "": ["(1) f(x) = sin(2x + 1)", "(2) f(x) = (x² + 1)³", "(3) f(x) = e^(x²)"], "": "\n(1) f(x) = sin(2x + 1)\n(2) f(x) = (x² + 1)³\n(3) f(x) = e^(x²)", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 4, "": {"1": 3, "2": 4, "3": 4}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-3-E01', 'K5-2-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-3-E01', 'K5-2-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-3-E01', 'K5-2-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-3-E01', 'K5-2-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-3-E01', 'K5-2-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-3-E01', 'K5-2-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-3-E01', 'M5-2-3-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-3-E01', 'M5-2-3-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-3-E01', 'M5-2-3-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-3-1-E01',
'例题',
'{"": "", "": "5 ", "": "5.3.1 ", "": 100, "": "7"}',
'{"": " f(x) = x³ - 3x + 1 ", "": [], "": " f(x) = x³ - 3x + 1 ", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": {}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-1-E01', 'K5-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-1-E01', '不等式求解', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-3-1-E01', 'M5-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-3-2-E01',
'例题',
'{"": "", "": "5 ", "": "5.3.2 ()", "": 104, "": "8"}',
'{"": " f(x) = x³ - 3x² + 2 ", "": [], "": " f(x) = x³ - 3x² + 2 ", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": {}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-2-E01', 'K5-3-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-2-E01', 'K5-3-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-3-2-E01', 'M5-3-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-3-2-E02',
'例题',
'{"": "", "": "5 ", "": "5.3.2 ()", "": 108, "": "9"}',
'{"": " f(x) = x³ - 3x² + 2 [0, 3] ", "": [], "": " f(x) = x³ - 3x² + 2 [0, 3] ", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 4, "": {}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-2-E02', 'K5-3-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-2-E02', 'K5-3-2-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-3-2-E02', 'M5-3-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-3-2-E03',
'例题',
'{"": "", "": "5 ", "": "5.3.2 ()", "": 111, "": "10"}',
'{"": " 12m 使", "": [], "": " 12m 使", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 5, "": {}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-2-E03', 'K5-3-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-2-E03', '函数建模', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-3-2-E03', 'M5-3-2-03');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-3-2-E03', 'M5-3-2-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-1-1-P01',
'练习题',
'{"": "", "": "5 ", "": "5.1.1 ", "": 67, "": " 1"}',
'{"": "线 s(t) = t² - 2t + 3m", "": ["(1) t = 1s t = 4s ", "(2) t = 2s "], "": "线 s(t) = t² - 2t + 3m\n(1) t = 1s t = 4s \n(2) t = 2s ", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2}, "": "1"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-1-P01', 'K5-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-1-P01', 'K5-1-2-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-1-1-P01', 'K5-1-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-1-1-P01', 'M5-1-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-1-1-P01', 'M5-1-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-2-1-P01',
'练习题',
'{"": "", "": "5 ", "": "5.2.1 ", "": 84, "": " 1"}',
'{"": "", "": ["(1) f(x) = x", "(2) f(x) = cos x", "(3) f(x) = 3ˣ", "(4) f(x) = logx"], "": "\n(1) f(x) = x\n(2) f(x) = cos x\n(3) f(x) = 3ˣ\n(4) f(x) = logx", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 2, "": {"1": 1, "2": 1, "3": 2, "4": 3}, "": "4"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-2-1-P01', 'K5-2-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-2-1-P01', 'M5-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T5-3-1-H01',
'习题',
'{"": "", "": "5 ", "": "5.3 ", "": 114, "": "5.3 1"}',
'{"": "", "": ["(1) f(x) = 2x³ - 6x + 1", "(2) f(x) = x - 2x² + 3", "(3) f(x) = x - 1/x"], "": "\n(1) f(x) = 2x³ - 6x + 1\n(2) f(x) = x - 2x² + 3\n(3) f(x) = x - 1/x", "": null}',
'{"": "", "": [""], "": ["", ""]}',
'{"": 3, "": {"1": 3, "2": 4, "3": 4}, "": "7"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-1-H01', 'K5-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T5-3-1-H01', '不等式求解', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T5-3-1-H01', 'M5-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-1-1-E01',
'例题',
'{"": "", "": " ", "": "6.1.1 ", "": 9, "": "1"}',
'{"": "", "": ["(1) 50kg", "(2) -5", "(3) F=10N", "(4) A点向东走1000m"], "": "\n(1) 50kg\n(2) -5\n(3) F=10N\n(4) A点向东走1000m", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 1, "": {}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-E01', 'K6-1-1-01', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-E01', 'M6-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-1-1-P01',
'练习题',
'{"": "", "": " ", "": "6.1.1 ", "": 12, "": " 1"}',
'{"": "线", "": [], "": "线", "": ""}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {}, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-P01', 'K6-1-1-09', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-P01', 'K6-1-1-08', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-1-1-P01', 'K6-1-1-07', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-1-1-P01', 'M6-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-1-E01',
'例题',
'{"": "", "": " ", "": "6.2.1 ", "": 15, "": "1"}',
'{"": "aba+b", "": [], "": "aba+b", "": "a和b的有向线段"}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-1-E01', 'K6-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-1-E01', 'K6-2-1-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-1-E01', 'K6-2-1-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-1-E01', 'M6-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-2-E01',
'例题',
'{"": "", "": " ", "": "6.2.2 ", "": 19, "": "1"}',
'{"": "aba-b", "": [], "": "aba-b", "": "a和b的有向线段"}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-E01', 'K6-2-2-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-E01', 'K6-2-2-03', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-2-E01', 'K6-2-2-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-2-E01', 'M6-2-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-3-E01',
'例题',
'{"": "", "": " ", "": "6.2.3 ", "": 22, "": "1"}',
'{"": "", "": ["(1) 3(2a-b) + 2(a+3b)", "(2) 2(3a-2b) - 3(2a+b)"], "": "\n(1) 3(2a-b) + 2(a+3b)\n(2) 2(3a-2b) - 3(2a+b)", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-3-E01', 'K6-2-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-3-E01', 'K6-2-3-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-3-E01', 'K6-2-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-3-E01', 'K6-2-3-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-3-E01', 'M6-2-3-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-3-E01', 'M6-2-3-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-4-E01',
'例题',
'{"": "", "": " ", "": "6.2.4 ", "": 27, "": "1"}',
'{"": "|a|=3|b|=4a与b的夹角为60°", "": ["(1) a·b", "(2) |a+b|", "(3) |a-b|"], "": "|a|=3|b|=4a与b的夹角为60°\n(1) a·b\n(2) |a+b|\n(3) |a-b|", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 3, "3": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E01', 'K6-2-4-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E01', 'K6-2-4-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E01', 'K6-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E01', 'K6-2-4-04', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E01', 'K6-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E01', 'K6-2-4-04', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E01', 'M6-2-4-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E01', 'M6-4-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E01', 'M6-4-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-4-E02',
'例题',
'{"": "", "": " ", "": "6.2.4 ", "": 28, "": "2"}',
'{"": "a=(2,3)b=(-1,2)", "": ["(1) a·b", "(2) |a||b|", "(3) a与b的夹角"], "": "a=(2,3)b=(-1,2)\n(1) a·b\n(2) |a||b|\n(3) a与b的夹角", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 2, "3": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E02', 'K6-2-4-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E02', 'K6-1-1-04', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E02', 'K6-2-4-04', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E02', 'K6-2-4-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-4-E02', 'K6-2-4-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E02', 'M6-2-4-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E02', 'M6-4-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-4-E02', 'M6-4-2-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-3-1-H01',
'习题',
'{"": "", "": " ", "": "6.2", "": 35, "": "6.2 8"}',
'{"": "ABCD中AB=aAD=bab表示", "": ["(1) ACBD", "(2) 线O到各顶点的向量"], "": "ABCD中AB=aAD=bab表示\n(1) ACBD\n(2) 线O到各顶点的向量", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 2, "2": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-1-H01', 'K6-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-1-H01', 'K6-2-2-02', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-1-H01', 'K6-2-3-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-3-1-H01', 'K6-2-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-3-1-H01', 'M6-3-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-3-1-H01', 'M6-2-3-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T6-2-3-H02',
'习题',
'{"": "", "": " ", "": "6.2", "": 36, "": "6.2 12"}',
'{"": "ab不共线xy满足向量方程xa+yb=0x=y=0", "": [], "": "ab不共线xy满足向量方程xa+yb=0x=y=0", "": null}',
'{"": "", "": ["线", ""], "": ["", ""]}',
'{"": 4, "": {}, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-3-H02', 'K6-2-3-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-3-H02', 'K6-1-1-08', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T6-2-3-H02', 'K6-2-3-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T6-2-3-H02', 'M6-2-3-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-1-1-E01',
'例题',
'{"": "", "": " 线", "": "3.1.1 ", "": 108, "": "1"}',
'{"": "F(-2,0)F(2,0)P到两个焦点的距离之和为6", "": [], "": "F(-2,0)F(2,0)P到两个焦点的距离之和为6", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-E01', 'K3-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-E01', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-E01', 'K3-1-1-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-1-1-E01', 'M3-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-1-1-E02',
'例题',
'{"": "", "": " 线", "": "3.1.1 ", "": 110, "": "2"}',
'{"": "x轴上2P(2,1)", "": [], "": "x轴上2P(2,1)", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-E02', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-E02', 'K3-1-1-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-E02', 'K3-1-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-1-1-E02', 'M3-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-1-1-E03',
'例题',
'{"": "", "": " 线", "": "3.1.1 ", "": 111, "": "3"}',
'{"": "$\frac{x^2}{25} + \frac{y^2}{16} = 1$", "": [], "": "$\frac{x^2}{25} + \frac{y^2}{16} = 1$", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-E03', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-E03', 'K3-1-1-03', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-1-1-E03', 'M3-1-1-03');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-1-1-P01',
'练习题',
'{"": "", "": " 线", "": "3.1.1 ", "": 113, "": "1"}',
'{"": "\n(1) F(-3,0)F(3,0)P到两个焦点的距离之和为10\n(2) F(0,-2)F(0,2)P到两个焦点的距离之和为8", "": ["(1) ", "(2) "], "": "\n(1) F(-3,0)F(3,0)P到两个焦点的距离之和为10\n(2) F(0,-2)F(0,2)P到两个焦点的距离之和为8", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"1": 2, "2": 2}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-P01', 'K3-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-P01', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-P01', 'K3-1-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-1-1-P01', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-1-1-P01', 'M3-1-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-1-1-P01', 'M3-1-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-2-1-E01',
'例题',
'{"": "", "": " 线", "": "3.2.1 线", "": 119, "": "1"}',
'{"": "线F(-5,0)F(5,0)线P到两个焦点的距离之差的绝对值为6线", "": [], "": "线F(-5,0)F(5,0)线P到两个焦点的距离之差的绝对值为6线", "": null}',
'{"": "线", "": ["", ""], "": ["", ""]}',
'{"": 2, "": {"": 2}, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-2-1-E01', 'K3-2-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-2-1-E01', 'K3-2-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-2-1-E01', 'K3-2-1-03', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-2-1-E01', 'M3-2-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-2-1-E02',
'例题',
'{"": "", "": " 线", "": "3.2.1 线", "": 121, "": "2"}',
'{"": "线x轴上$\frac{1}{2}$线P(3,2)线", "": [], "": "线x轴上$\frac{1}{2}$线P(3,2)线", "": null}',
'{"": "线", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-2-1-E02', 'K3-2-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-2-1-E02', 'K3-2-1-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-2-1-E02', 'K3-2-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-2-1-E02', 'M3-2-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-3-1-E01',
'例题',
'{"": "", "": " 线", "": "3.3 线", "": 127, "": "1"}',
'{"": "线F(2,0)线", "": [], "": "线F(2,0)线", "": null}',
'{"": "线", "": ["", ""], "": ["", ""]}',
'{"": 1, "": {"": 1}, "": "线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-3-1-E01', 'K3-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-3-1-E01', 'K3-3-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-3-1-E01', 'M3-3-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-3-1-E02',
'例题',
'{"": "", "": " 线", "": "3.3 线", "": 128, "": "2"}',
'{"": "线线x = -3线", "": [], "": "线线x = -3线", "": null}',
'{"": "线", "": ["线", ""], "": ["线", ""]}',
'{"": 1, "": {"": 1}, "": "线线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-3-1-E02', 'K3-3-1-01', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-3-1-E02', 'K3-3-1-02', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-3-1-E02', 'M3-3-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-5-1-E01',
'例题',
'{"": "", "": " 线", "": "3.5 线线", "": 135, "": "1"}',
'{"": "线y = x + 1$\frac{x^2}{4} + \frac{y^2}{3} = 1$", "": [], "": "线y = x + 1$\frac{x^2}{4} + \frac{y^2}{3} = 1$", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-5-1-E01', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-5-1-E01', 'K3-5-1-01', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-5-1-E01', 'M3-5-1-01');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-5-1-E02',
'例题',
'{"": "", "": " 线", "": "3.5 线线", "": 137, "": "2"}',
'{"": "线y = kx + 1$\frac{x^2}{4} + y^2 = 1$AB两点\n(1) k为何值时线\n(2) k为何值时AB的长度最大", "": ["(1) k为何值时线", "(2) k为何值时AB的长度最大"], "": "线y = kx + 1$\frac{x^2}{4} + y^2 = 1$AB两点\n(1) k为何值时线\n(2) k为何值时AB的长度最大", "": null}',
'{"": "", "": ["", "", ""], "": ["", "", ""]}',
'{"": 4, "": {"1": 3, "2": 4}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-5-1-E02', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-5-1-E02', 'K3-5-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-5-1-E02', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-5-1-E02', 'K3-5-1-01', '辅助涉及');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-5-1-E02', 'K3-5-1-02', '辅助涉及');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-5-1-E02', 'M3-5-1-01');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-5-1-E02', 'M3-5-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-H01',
'习题',
'{"": "", "": " 线", "": "3.1", "": 115, "": "3.1 1"}',
'{"": "\n(1) (0,-2)(0,2)P(3,4)\n(2) 6$\frac{3}{5}$x轴上", "": ["(1) ", "(2) "], "": "\n(1) (0,-2)(0,2)P(3,4)\n(2) 6$\frac{3}{5}$x轴上", "": null}',
'{"": "", "": ["", ""], "": ["", ""]}',
'{"": 3, "": {"1": 3, "2": 3}, "": ""}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-H01', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-H01', 'K3-1-1-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-H01', 'K3-1-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-H01', 'K3-1-1-04', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-H01', 'M3-1-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-H01', 'M3-1-1-02');
INSERT INTO kg.problems (id, type, source_info, content, question_types, difficulty)
VALUES (
'T3-H02',
'习题',
'{"": "", "": " 线", "": "3.2", "": 125, "": "3.2 2"}',
'{"": "线\n(1) (±6,0)M(5,2)\n(2) 线y = $\frac{3}{4}$x(5,0)", "": ["(1) 线", "(2) 线"], "": "线\n(1) (±6,0)M(5,2)\n(2) 线y = $\frac{3}{4}$x(5,0)", "": null}',
'{"": "线", "": ["", "线"], "": ["", "线"]}',
'{"": 4, "": {"1": 3, "2": 4}, "": "2线"}'
);
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-H02', 'K3-2-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-H02', 'K3-2-1-03', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-H02', 'K3-2-1-02', '主要考查');
INSERT INTO kg.problem_knowledge_link (problem_id, knowledge_id, relevance)
VALUES ('T3-H02', 'K3-2-1-04', '主要考查');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-H02', 'M3-2-1-02');
INSERT INTO kg.problem_method_link (problem_id, method_id)
VALUES ('T3-H02', 'M3-2-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-1-01', 'K2-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-1-02', 'K2-1-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-1-02', 'K2-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-01', 'K2-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-02', 'K2-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-03', 'K2-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-04', 'K2-1-2-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-05', 'K2-1-2-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-05', 'K2-1-2-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-06', 'K2-1-2-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-07', 'K2-1-2-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-2-07', 'K2-1-2-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-01', 'K2-1-3-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-01', 'K2-1-3-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-01', 'K2-1-3-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-01', 'K2-1-3-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-02', 'K2-1-3-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-03', 'K2-1-3-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-03', 'K2-1-3-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-03', 'K2-1-3-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-04', 'K2-1-3-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-04', 'K2-1-3-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-05', 'K2-1-3-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M2-1-3-05', 'K2-1-3-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-01', 'K10-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-01', 'K10-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-01', 'K10-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-01', 'K10-1-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-02', 'K10-1-06');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-02', 'K10-1-10');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-02', 'K10-1-11');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-02', 'K10-1-12');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-02', 'K10-1-13');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-02', 'K10-1-14');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-02', 'K10-1-15');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-03', 'K10-1-17');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-03', 'K10-1-18');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-03', 'K10-1-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-1-04', 'K10-1-19');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-2-01', 'K10-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-2-01', 'K10-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-3-01', 'K10-3-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-3-01', 'K10-3-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-3-02', 'K10-3-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-应用-01', 'K10-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M10-应用-01', 'K10-1-16');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-01', 'K6-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-02', 'K6-1-1-07');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-02', 'K6-1-1-08');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-02', 'K6-1-1-09');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-1-01', 'K6-2-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-1-01', 'K6-2-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-2-01', 'K6-2-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-2-01', 'K6-2-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-2-01', 'K6-2-2-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-3-01', 'K6-2-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-3-01', 'K6-2-3-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-3-02', 'K6-2-3-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-01', 'K6-2-3-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-02', 'K6-2-4-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-02', 'K6-2-4-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-03', 'K6-2-4-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-03', 'K6-2-4-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-04', 'K6-2-4-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-04', 'K6-2-4-06');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-3-1-01', 'K6-2-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-3-1-01', 'K6-2-2-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-3-2-01', 'K6-2-3-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-3-2-01', 'K6-2-3-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-4-1-01', 'K6-1-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-4-1-01', 'K6-2-4-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-4-2-01', 'K6-2-4-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-4-2-01', 'K6-2-4-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-1-01', 'K7-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-1-01', 'K7-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-1-02', 'K7-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-1-03', 'K7-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-2-01', 'K7-1-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-2-01', 'K7-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-2-02', 'K7-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-2-02', 'K7-1-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-1-01', 'K7-2-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-2-01', 'K7-2-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-3-1-01', 'K7-3-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-3-2-01', 'K7-3-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-4-1-01', 'K7-4-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-4-1-01', 'K7-4-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-4-1-02', 'K7-4-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-4-2-01', 'K7-4-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-5-1-01', 'K7-5-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-5-1-02', 'K7-5-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-1-1-01', 'K3-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-1-1-01', 'K3-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-1-1-02', 'K3-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-1-1-02', 'K3-1-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-1-1-02', 'K3-1-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-1-1-03', 'K3-1-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-1-1-03', 'K3-1-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-2-1-01', 'K3-2-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-2-1-01', 'K3-2-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-2-1-02', 'K3-2-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-2-1-02', 'K3-2-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-2-1-02', 'K3-2-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-2-1-02', 'K3-2-1-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-2-1-03', 'K3-2-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-2-1-03', 'K3-2-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-3-1-01', 'K3-3-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-3-1-01', 'K3-3-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-3-1-02', 'K3-3-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-3-1-02', 'K3-3-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-3-1-03', 'K3-3-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-4-1-01', 'K3-1-1-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-4-1-01', 'K3-3-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-4-1-01', 'K3-2-1-05');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-5-1-01', 'K3-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-5-1-01', 'K3-2-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-5-1-01', 'K3-3-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-5-1-02', 'K3-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-5-1-02', 'K3-2-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-5-1-02', 'K3-3-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M3-5-1-02', '根与系数关系');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-01', 'K6-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-02', 'K6-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-03', 'K6-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-03', 'K6-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-1-03', 'K6-1-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-2-01', 'K6-2-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-2-01', 'K6-2-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-3-01', 'K6-2-4-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-3-01', 'K6-2-4-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-3-1-01', 'K6-3-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-3-2-01', 'K6-3-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-3-2-01', 'K6-3-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-01', 'K6-2-4-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-4-01', 'K6-1-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-5-01', 'K6-2-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-5-01', 'K6-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-6-01', 'K6-2-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-6-01', 'K6-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-7-01', 'K6-2-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-2-7-01', 'K6-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-1-2-01', 'K6-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M6-3-1-02', 'K6-3-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-1-01', 'K9-1-02 全面调查');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-1-01', 'K9-1-03 抽样调查');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-1-02', 'K9-1-05 简单随机抽样');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-1-02', 'K9-1-06 抽签法');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-1-02', 'K9-1-07 随机数法');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-1-03', 'K9-1-11 分层随机抽样');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-1-03', 'K9-1-12 比例分配');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-01', 'K9-2-04 频率分布表');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-01', 'K9-2-01 极差');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-02', 'K9-2-05 频率分布直方图');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-02', 'K9-2-04 频率分布表');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-03', 'K9-1-13 百分位数');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-03', 'K9-1-14 中位数');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-04', 'K9-1-10 样本均值');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-04', 'K9-1-14 中位数');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-04', 'K9-1-15 众数');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-05', 'K9-2-02 方差');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-05', 'K9-2-03 标准差');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-06', 'K9-2-07 条形图');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-06', 'K9-2-08 扇形图');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-06', 'K9-2-09 折线图');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-2-06', 'K9-2-05 频率分布直方图');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-3-01', 'K9-3-01 BMI');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-应用-01', 'K9-1-09 总体均值');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M9-应用-01', 'K9-1-10 样本均值');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-1-01', 'K7-1-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-1-02', 'K7-1-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-2-01', 'K7-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-1-2-02', 'K7-1-2-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-1-01', 'K7-2-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-1-01', 'K7-2-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-1-01', 'K7-2-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-1-01', 'K7-2-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-2-01', 'K7-2-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-2-01', 'K7-2-2-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-2-01', 'K7-2-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-2-02', 'K7-2-2-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-2-2-02', 'K7-2-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-3-1-01', 'K7-3-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-3-1-01', 'K7-3-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-3-2-01', 'K7-3-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-3-2-01', 'K7-3-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-应用-01', 'K7-1-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-应用-01', 'K7-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M7-应用-01', 'K7-2-1-04');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-1-1-01', 'K1-1-1-08');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-1-1-02', 'K1-1-1-08');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-1-1-03', 'K1-1-1-10');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-1-1-04', 'K1-1-1-13');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-1-2-01', 'K1-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-1-2-02', 'K1-1-2-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-1-2-03', 'K1-1-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-1-2-03', 'K1-1-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-2-1-01', 'K1-2-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-3-1-01', 'K1-3-1-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-3-1-02', 'K1-3-1-03');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-4-1-01', 'K1-4-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-4-1-02', 'K1-4-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-4-1-03', 'K1-4-1-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-4-2-01', 'K1-4-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-4-2-02', 'K1-4-2-01');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-4-2-03', 'K1-4-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-4-2-04', 'K1-4-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M1-4-2-05', 'K1-4-2-02');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-1-01', 'K8-1-01 空间几何体');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-1-01', 'K8-1-02 棱柱');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-1-01', 'K8-1-03 棱锥');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-1-01', 'K8-1-04 棱台');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-1-02', 'K8-1-05 空间几何体的直观图');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-1-02', 'K8-2-01 斜二测画法');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-01', 'K8-3-01 柱体的体积');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-01', 'K8-1-02 棱柱');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-01', 'K8-1-06 圆柱');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-02', 'K8-3-02 锥体的体积');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-02', 'K8-1-03 棱锥');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-02', 'K8-1-07 圆锥');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-03', 'K8-3-03 台体的体积');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-03', 'K8-1-04 棱台');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-2-03', 'K8-1-08 圆台');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-3-01', 'K8-3-04 球的表面积和体积');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-3-01', 'K8-1-09 球');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-4-01', 'K8-4-01 平面');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-4-01', 'K8-4-02 平面的基本性质');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-5-01', 'K8-5-01 空间的平行关系');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-5-01', 'K8-5-02 直线与直线平行');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-5-01', 'K8-5-03 直线与平面平行');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-5-01', 'K8-5-04 平面与平面平行');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-6-01', 'K8-6-01 异面直线所成的角');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-6-01', 'K8-6-02 异面直线的判定');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-6-02', 'K8-6-03 直线与平面垂直的判定');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-6-02', 'K8-6-04 直线与平面垂直的性质');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-6-03', 'K8-6-05 平面与平面垂直的判定');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-6-03', 'K8-6-06 平面与平面垂直的性质');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-应用-01', 'K8-3-04 球的表面积和体积');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-应用-01', 'K8-1-02 棱柱');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-应用-01', 'K8-1-03 棱锥');
INSERT INTO kg.method_knowledge_link (method_id, knowledge_id)
VALUES ('M8-应用-01', 'K8-1-04 棱台');