1048 lines
33 KiB
JSON
1048 lines
33 KiB
JSON
{
|
||
"problem_list": [
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-1-1-E01",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.1.1 数系的扩充和复数的概念",
|
||
"页码": 76,
|
||
"原始编号": "例1"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "当实数 m 取什么值时,复数 z=m+1+(m-1)i 是下列数?",
|
||
"问题": [
|
||
"(1) 实数;",
|
||
"(2) 虚数;",
|
||
"(3) 纯虚数。"
|
||
],
|
||
"完整题目": "当实数 m 取什么值时,复数 z=m+1+(m-1)i 是下列数?\n(1) 实数;\n(2) 虚数;\n(3) 纯虚数。",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-1-02", "知识点名称": "复数的分类"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-1-01", "知识点名称": "数系的扩充和复数的概念"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-1-1-01", "方法名称": "复数分类判断法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数基础",
|
||
"二级题型": ["复数分类判断", "参数求解"],
|
||
"综合标签": ["基础应用", "分类讨论"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 2,
|
||
"分小题难度": {
|
||
"小题1": 2,
|
||
"小题2": 2,
|
||
"小题3": 3
|
||
},
|
||
"难度说明": "基础应用题,考查复数分类的基本概念,纯虚数需要两个条件,难度稍高"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-1-1-P01",
|
||
"题目类型": "练习题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.1.1 数系的扩充和复数的概念",
|
||
"页码": 80,
|
||
"原始编号": "练习 第1题"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "说出下列复数的实部和虚部:",
|
||
"问题": [
|
||
"$-2+\\frac{1}{3}i, \\sqrt{2}+i, \\frac{\\sqrt{2}}{2}, -\\sqrt{3}i, i, 0.$"
|
||
],
|
||
"完整题目": "说出下列复数的实部和虚部:\n$-2+\\frac{1}{3}i, \\sqrt{2}+i, \\frac{\\sqrt{2}}{2}, -\\sqrt{3}i, i, 0.$",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-1-01", "知识点名称": "数系的扩充和复数的概念"}
|
||
],
|
||
"辅助涉及": []
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": []
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数基础",
|
||
"二级题型": ["复数识别", "实部虚部"],
|
||
"综合标签": ["基础练习", "概念理解"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 1,
|
||
"难度说明": "基础概念题,直接考查复数的基本构成"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-1-1-P03",
|
||
"题目类型": "练习题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.1.1 数系的扩充和复数的概念",
|
||
"页码": 80,
|
||
"原始编号": "练习 第3题"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "求满足下列条件的实数$x,y$的值:",
|
||
"问题": [
|
||
"(1)$(x+y)+(y-1)i=(2x+3y)+(2y+1)i$;",
|
||
"(2)$(x+y-3)+(x-2)i=0.$"
|
||
],
|
||
"完整题目": "求满足下列条件的实数$x,y$的值:\n(1)$(x+y)+(y-1)i=(2x+3y)+(2y+1)i$;\n(2)$(x+y-3)+(x-2)i=0.$",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-1-03", "知识点名称": "复数相等"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-1-01", "知识点名称": "数系的扩充和复数的概念"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-1-1-02", "方法名称": "复数相等求解法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数基础",
|
||
"二级题型": ["复数相等", "参数求解"],
|
||
"综合标签": ["方程求解", "基础应用"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 2,
|
||
"分小题难度": {
|
||
"小题1": 2,
|
||
"小题2": 2
|
||
},
|
||
"难度说明": "利用复数相等条件建立方程组,考查基本应用能力"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-1-2-E02",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.1.2 复数的几何意义",
|
||
"页码": 78,
|
||
"原始编号": "例2"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "设复数 $z_1=4+3i, z_2=4-3i$.",
|
||
"问题": [
|
||
"(1) 在复平面内画出复数 $z_1, z_2$ 对应的点和向量;",
|
||
"(2) 求复数 $z_1, z_2$ 的模,并比较它们的模的大小."
|
||
],
|
||
"完整题目": "设复数 $z_1=4+3i, z_2=4-3i$.\n(1) 在复平面内画出复数 $z_1, z_2$ 对应的点和向量;\n(2) 求复数 $z_1, z_2$ 的模,并比较它们的模的大小.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"小题1": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-2-01", "知识点名称": "复数的几何意义"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-1-03", "知识点名称": "复数相等"}
|
||
]
|
||
},
|
||
"小题2": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-2-02", "知识点名称": "复数的模"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-2-03", "知识点名称": "共轭复数"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"小题1": [
|
||
{"方法编号": "M7-应用-01", "方法名称": "复数几何应用法"}
|
||
],
|
||
"小题2": [
|
||
{"方法编号": "M7-1-2-01", "方法名称": "复数模计算法"},
|
||
{"方法编号": "M7-1-2-02", "方法名称": "共轭复数求法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数几何",
|
||
"二级题型": ["几何表示", "模的计算", "共轭复数"],
|
||
"综合标签": ["数形结合", "基础应用"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 2,
|
||
"分小题难度": {
|
||
"小题1": 1,
|
||
"小题2": 2
|
||
},
|
||
"难度说明": "基础题,考查复数的几何表示和模的计算"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-1-2-E03",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.1.2 复数的几何意义",
|
||
"页码": 79,
|
||
"原始编号": "例3"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "设 $z \\in \\mathbf{C}$, 在复平面内 $z$ 对应的点为 $Z$, 那么满足下列条件的点 $Z$ 的集合是什么图形?",
|
||
"问题": [
|
||
"(1) $|z|=1$;",
|
||
"(2) $1<|z|<2$."
|
||
],
|
||
"完整题目": "设 $z \\in \\mathbf{C}$, 在复平面内 $z$ 对应的点为 $Z$, 那么满足下列条件的点 $Z$ 的集合是什么图形?\n(1) $|z|=1$;\n(2) $1<|z|<2$.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-2-02", "知识点名称": "复数的模"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-2-01", "知识点名称": "复数的几何意义"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-应用-01", "方法名称": "复数几何应用法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数几何",
|
||
"二级题型": ["轨迹问题", "不等式区域"],
|
||
"综合标签": ["数形结合", "几何应用"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 3,
|
||
"分小题难度": {
|
||
"小题1": 2,
|
||
"小题2": 3
|
||
},
|
||
"难度说明": "考查复数模的几何意义,不等式区域需要交集思想"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-1-H01",
|
||
"题目类型": "习题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "习题 7.1",
|
||
"页码": 80,
|
||
"原始编号": "复习巩固 第1题"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.",
|
||
"问题": [
|
||
"(1) 实部为 $-\\sqrt{2}$ 的虚数;",
|
||
"(2) 虚部为 $-\\sqrt{2}$ 的虚数;",
|
||
"(3) 虚部为 $-\\sqrt{2}$ 的纯虚数."
|
||
],
|
||
"完整题目": "符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.\n(1) 实部为 $-\\sqrt{2}$ 的虚数;\n(2) 虚部为 $-\\sqrt{2}$ 的虚数;\n(3) 虚部为 $-\\sqrt{2}$ 的纯虚数.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-1-02", "知识点名称": "复数的分类"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-1-01", "知识点名称": "数系的扩充和复数的概念"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-1-1-01", "方法名称": "复数分类判断法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数基础",
|
||
"二级题型": ["存在性问题", "复数分类"],
|
||
"综合标签": ["概念理解", "逻辑推理"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 2,
|
||
"分小题难度": {
|
||
"小题1": 2,
|
||
"小题2": 1,
|
||
"小题3": 2
|
||
},
|
||
"难度说明": "考查对复数分类概念的理解,纯虚数需要特别注意"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-1-H02",
|
||
"题目类型": "习题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "习题 7.1",
|
||
"页码": 80,
|
||
"原始编号": "复习巩固 第2题"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "当实数 $m$ 取什么值时,复数 $(m^2-5m+6)+(m^2-3m)i$ 是下列数?",
|
||
"问题": [
|
||
"(1) 实数;",
|
||
"(2) 虚数;",
|
||
"(3) 纯虚数."
|
||
],
|
||
"完整题目": "当实数 $m$ 取什么值时,复数 $(m^2-5m+6)+(m^2-3m)i$ 是下列数?\n(1) 实数;\n(2) 虚数;\n(3) 纯虚数.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-1-02", "知识点名称": "复数的分类"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-1-01", "知识点名称": "数系的扩充和复数的概念"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-1-1-01", "方法名称": "复数分类判断法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数基础",
|
||
"二级题型": ["复数分类", "参数求解"],
|
||
"综合标签": ["综合应用", "分类讨论"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 3,
|
||
"分小题难度": {
|
||
"小题1": 3,
|
||
"小题2": 2,
|
||
"小题3": 3
|
||
},
|
||
"难度说明": "比例1更复杂,需要解二次不等式,综合性更强"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-2-1-E01",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.2.1 复数的加、减运算及其几何意义",
|
||
"页码": 83,
|
||
"原始编号": "例1"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "计算$(5-6i)+(-2-i)-(3+4i)$。",
|
||
"问题": [],
|
||
"完整题目": "计算$(5-6i)+(-2-i)-(3+4i)$。",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-2-1-01", "知识点名称": "复数的加法运算"},
|
||
{"知识点编号": "K7-2-1-03", "知识点名称": "复数的减法运算"}
|
||
],
|
||
"辅助涉及": []
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-2-1-01", "方法名称": "复数加减运算及几何意义"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数运算",
|
||
"二级题型": ["加减运算", "化简计算"],
|
||
"综合标签": ["基础计算", "运算技巧"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 2,
|
||
"难度说明": "基本运算题,考查复数加减法法则的掌握"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-2-1-E02",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.2.1 复数的加、减运算及其几何意义",
|
||
"页码": 84,
|
||
"原始编号": "例2"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "根据复数及其运算的几何意义,求复平面內的两点 $Z_1(x_1, y_1)$, $Z_2(x_2, y_2)$ 之间的距离.",
|
||
"问题": [],
|
||
"完整题目": "根据复数及其运算的几何意义,求复平面內的两点 $Z_1(x_1, y_1)$, $Z_2(x_2, y_2)$ 之间的距离.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-2-1-04", "知识点名称": "复数减法的几何意义"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-2-02", "知识点名称": "复数的模"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-2-1-01", "方法名称": "复数加减运算及几何意义"},
|
||
{"方法编号": "M7-应用-01", "方法名称": "复数几何应用法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数几何",
|
||
"二级题型": ["距离公式", "几何应用"],
|
||
"综合标签": ["数形结合", "公式推导"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 3,
|
||
"难度说明": "几何应用题,需要理解复数减法的几何意义并推导距离公式"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-2-2-E03",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.2.2 复数的乘、除运算",
|
||
"页码": 85,
|
||
"原始编号": "例3"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "计算 $(1-2i)(3+4i)(-2+i)$。",
|
||
"问题": [],
|
||
"完整题目": "计算 $(1-2i)(3+4i)(-2+i)$。",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-2-2-01", "知识点名称": "复数的乘法运算"}
|
||
],
|
||
"辅助涉及": []
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-2-2-01", "方法名称": "复数乘除运算(代数形式)"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数运算",
|
||
"二级题型": ["乘法运算", "连乘计算"],
|
||
"综合标签": ["基础计算", "运算技巧"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 3,
|
||
"难度说明": "多个复数连乘,需要仔细计算和化简"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-2-2-E04",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.2.2 复数的乘、除运算",
|
||
"页码": 85,
|
||
"原始编号": "例4"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "计算:",
|
||
"问题": [
|
||
"(1) $(2+3i)(2-3i)$;",
|
||
"(2) $(1+i)^2$."
|
||
],
|
||
"完整题目": "计算:\n(1) $(2+3i)(2-3i)$;\n(2) $(1+i)^2$.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-2-2-01", "知识点名称": "复数的乘法运算"},
|
||
{"知识点编号": "K7-2-2-02", "知识点名称": "共轭复数的积"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-2-03", "知识点名称": "共轭复数"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-2-2-01", "方法名称": "复数乘除运算(代数形式)"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数运算",
|
||
"二级题型": ["乘法运算", "共轭复数", "平方运算"],
|
||
"综合标签": ["运算技巧", "公式应用"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 2,
|
||
"分小题难度": {
|
||
"小题1": 2,
|
||
"小题2": 2
|
||
},
|
||
"难度说明": "利用乘法公式简化计算,考查共轭复数的性质"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-2-2-E05",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.2.2 复数的乘、除运算",
|
||
"页码": 86,
|
||
"原始编号": "例5"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "计算$(1+2i)\\div(3-4i)$。",
|
||
"问题": [],
|
||
"完整题目": "计算$(1+2i)\\div(3-4i)$。",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-2-2-03", "知识点名称": "复数的除法运算"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-2-2-02", "知识点名称": "共轭复数的积"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-2-2-02", "方法名称": "复数除法分母实数化法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数运算",
|
||
"二级题型": ["除法运算", "分母实数化"],
|
||
"综合标签": ["计算技巧", "方法应用"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 3,
|
||
"难度说明": "复数除法计算,需要掌握分母实数化的方法"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-2-2-E06",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.2.2 复数的乘、除运算",
|
||
"页码": 86,
|
||
"原始编号": "例6"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "在复数范围内解下列方程:",
|
||
"问题": [
|
||
"(1) $x^2+2=0$;",
|
||
"(2) $ax^2+bx+c=0$, 其中 $a, b, c \\in \\mathbf{R}$, 且 $a \\neq 0, \\Delta=b^2-4ac<0$."
|
||
],
|
||
"完整题目": "在复数范围内解下列方程:\n(1) $x^2+2=0$;\n(2) $ax^2+bx+c=0$, 其中 $a, b, c \\in \\mathbf{R}$, 且 $a \\neq 0, \\Delta=b^2-4ac<0$.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-2-2-03", "知识点名称": "复数的除法运算"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-1-01", "知识点名称": "数系的扩充和复数的概念"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-2-2-01", "方法名称": "复数乘除运算(代数形式)"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "方程求解",
|
||
"二级题型": ["一元二次方程", "复数根"],
|
||
"综合标签": ["理论应用", "公式推导"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 4,
|
||
"分小题难度": {
|
||
"小题1": 2,
|
||
"小题2": 4
|
||
},
|
||
"难度说明": "第(2)问推导复数范围内的求根公式,理论性较强"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-3-1-E01",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.3.1 复数的三角表示式",
|
||
"页码": 91,
|
||
"原始编号": "例1"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "画出下列复数对应的向量,并把这些复数表示成三角形式:",
|
||
"问题": [
|
||
"(1) $\\frac{1}{2}+\\frac{\\sqrt{3}}{2}i$;",
|
||
"(2) $1-i$."
|
||
],
|
||
"完整题目": "画出下列复数对应的向量,并把这些复数表示成三角形式:\n(1) $\\frac{1}{2}+\\frac{\\sqrt{3}}{2}i$;\n(2) $1-i$.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-3-1-01", "知识点名称": "复数的三角表示式"},
|
||
{"知识点编号": "K7-3-1-02", "知识点名称": "代数形式与三角形式的互化"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-2-02", "知识点名称": "复数的模"},
|
||
{"知识点编号": "K7-1-2-01", "知识点名称": "复数的几何意义"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-3-1-01", "方法名称": "复数三角形式互化法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数三角表示",
|
||
"二级题型": ["代数化三角", "几何表示"],
|
||
"综合标签": ["数形结合", "形式转换"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 3,
|
||
"分小题难度": {
|
||
"小题1": 3,
|
||
"小题2": 3
|
||
},
|
||
"难度说明": "代数形式转三角形式,需要求模和辐角,考查三角函数知识"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-3-1-E02",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.3.1 复数的三角表示式",
|
||
"页码": 92,
|
||
"原始编号": "例2"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "分别指出下列复数的模和一个辐角,画出它们对应的向量,并把这些复数表示成代数形式:",
|
||
"问题": [
|
||
"(1) $\\cos \\pi + i\\sin \\pi$;",
|
||
"(2) $6(\\cos \\frac{11\\pi}{6} + i\\sin \\frac{11\\pi}{6})$."
|
||
],
|
||
"完整题目": "分别指出下列复数的模和一个辐角,画出它们对应的向量,并把这些复数表示成代数形式:\n(1) $\\cos \\pi + i\\sin \\pi$;\n(2) $6(\\cos \\frac{11\\pi}{6} + i\\sin \\frac{11\\pi}{6})$.",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-3-1-02", "知识点名称": "代数形式与三角形式的互化"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-3-1-01", "知识点名称": "复数的三角表示式"},
|
||
{"知识点编号": "K7-1-2-02", "知识点名称": "复数的模"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-3-1-01", "方法名称": "复数三角形式互化法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数三角表示",
|
||
"二级题型": ["三角化代数", "几何表示"],
|
||
"综合标签": ["形式转换", "三角函数应用"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 2,
|
||
"分小题难度": {
|
||
"小题1": 1,
|
||
"小题2": 2
|
||
},
|
||
"难度说明": "三角形式转代数形式,直接应用三角函数值,难度适中"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-3-2-E03",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.3.2 复数乘、除运算的三角表示及其几何意义",
|
||
"页码": 94,
|
||
"原始编号": "例3"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "已知 $z_1=\\frac{3}{2}(\\cos \\frac{\\pi}{6} + i\\sin \\frac{\\pi}{6})$, $z_2=2(\\cos \\frac{\\pi}{3} + i\\sin \\frac{\\pi}{3})$。",
|
||
"问题": [
|
||
"求 $z_1z_2$,请把结果化为代数形式,并作出几何解释。"
|
||
],
|
||
"完整题目": "已知 $z_1=\\frac{3}{2}(\\cos \\frac{\\pi}{6} + i\\sin \\frac{\\pi}{6})$, $z_2=2(\\cos \\frac{\\pi}{3} + i\\sin \\frac{\\pi}{3})$。\n求 $z_1z_2$,请把结果化为代数形式,并作出几何解释。",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-3-1-01", "知识点名称": "复数的三角表示式"},
|
||
{"知识点编号": "K7-3-1-02", "知识点名称": "代数形式与三角形式的互化"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-2-01", "知识点名称": "复数的几何意义"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-3-2-01", "方法名称": "复数三角形式乘除运算"},
|
||
{"方法编号": "M7-3-1-01", "方法名称": "复数三角形式互化法"},
|
||
{"方法编号": "M7-应用-01", "方法名称": "复数几何应用法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数三角运算",
|
||
"二级题型": ["三角形式乘法", "几何意义"],
|
||
"综合标签": ["数形结合", "综合应用"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 4,
|
||
"难度说明": "综合题,涉及三角形式乘法、形式转换和几何解释"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-3-2-E04",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.3.2 复数乘、除运算的三角表示及其几何意义",
|
||
"页码": 95,
|
||
"原始编号": "例4"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "如图7.3-8,向量$\\vec{OZ}$对应的复数为$1+i$,把$\\vec{OZ}$绕点$O$按逆时针方向旋转$120^\\circ$,得到$\\vec{OZ'}$。",
|
||
"问题": [
|
||
"求向量$\\vec{OZ'}$对应的复数(用代数形式表示)。"
|
||
],
|
||
"完整题目": "如图7.3-8,向量$\\vec{OZ}$对应的复数为$1+i$,把$\\vec{OZ}$绕点$O$按逆时针方向旋转$120^\\circ$,得到$\\vec{OZ'}$。\n求向量$\\vec{OZ'}$对应的复数(用代数形式表示)。",
|
||
"图片": "旋转向量图"
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-3-1-01", "知识点名称": "复数的三角表示式"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-1-2-01", "知识点名称": "复数的几何意义"},
|
||
{"知识点编号": "K7-3-1-02", "知识点名称": "代数形式与三角形式的互化"}
|
||
]
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-3-2-01", "方法名称": "复数三角形式乘除运算"},
|
||
{"方法编号": "M7-3-1-01", "方法名称": "复数三角形式互化法"},
|
||
{"method编号": "M7-应用-01", "方法名称": "复数几何应用法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数几何变换",
|
||
"二级题型": ["向量旋转", "几何应用"],
|
||
"综合标签": ["数形结合", "综合应用"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 4,
|
||
"难度说明": "几何变换题,需要理解复数乘法的几何意义"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-3-2-E05",
|
||
"题目类型": "例题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "7.3.2 复数乘、除运算的三角表示及其几何意义",
|
||
"页码": 95,
|
||
"原始编号": "例5"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "计算$4(\\cos \\frac{4\\pi}{3}+i\\sin \\frac{4\\pi}{3}) \\div [2(\\cos \\frac{5\\pi}{6}+i\\sin \\frac{5\\pi}{6})]$,并把结果化为代数形式。",
|
||
"问题": [],
|
||
"完整题目": "计算$4(\\cos \\frac{4\\pi}{3}+i\\sin \\frac{4\\pi}{3}) \\div [2(\\cos \\frac{5\\pi}{6}+i\\sin \\frac{5\\pi}{6})]$,并把结果化为代数形式。",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"整体": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-3-1-01", "知识点名称": "复数的三角表示式"},
|
||
{"知识点编号": "K7-3-1-02", "知识点名称": "代数形式与三角形式的互化"}
|
||
],
|
||
"辅助涉及": []
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"整体": [
|
||
{"方法编号": "M7-3-2-01", "方法名称": "复数三角形式乘除运算"},
|
||
{"method编号": "M7-3-1-01", "方法名称": "复数三角形式互化法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "复数三角运算",
|
||
"二级题型": ["三角形式除法", "形式转换"],
|
||
"综合标签": ["计算技巧", "角度运算"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 4,
|
||
"难度说明": "三角形式除法计算,需要角度运算和形式转换"
|
||
}
|
||
},
|
||
|
||
{
|
||
"题目基本信息": {
|
||
"编号": "T7-R01",
|
||
"题目类型": "复习题",
|
||
"来源信息": {
|
||
"教材": "人教版高中数学必修第二册",
|
||
"章节": "第七章 复数",
|
||
"小节": "复习参考题7",
|
||
"页码": 101,
|
||
"原始编号": "复习巩固 第1题"
|
||
}
|
||
},
|
||
|
||
"题目内容": {
|
||
"题干": "选择题",
|
||
"问题": [
|
||
"(1) 复数$a+bi$与$c+di$的积是实数的充要条件是( ).\n (A) $ad+bc=0$\n (B) $ac+bd=0$\n (C) $ac=bd$\n (D) $ad=bc$",
|
||
"(2) 复数$i-\\frac{5}{2}$的共轭复数是( ).\n (A) $i+2$\n (B) $i-2$\n (C) $-2-i$\n (D) $2-i$"
|
||
],
|
||
"完整题目": "选择题\n(1) 复数$a+bi$与$c+di$的积是实数的充要条件是( ).\n (A) $ad+bc=0$\n (B) $ac+bd=0$\n (C) $ac=bd$\n (D) $ad=bc$\n(2) 复数$i-\\frac{5}{2}$的共轭复数是( ).\n (A) $i+2$\n (B) $i-2$\n (C) $-2-i$\n (D) $2-i$",
|
||
"图片": null
|
||
},
|
||
|
||
"知识点标注": {
|
||
"小题1": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-2-2-01", "知识点名称": "复数的乘法运算"}
|
||
],
|
||
"辅助涉及": [
|
||
{"知识点编号": "K7-2-2-02", "知识点名称": "共轭复数的积"}
|
||
]
|
||
},
|
||
"小题2": {
|
||
"主要考查": [
|
||
{"知识点编号": "K7-1-2-03", "知识点名称": "共轭复数"}
|
||
],
|
||
"辅助涉及": []
|
||
}
|
||
},
|
||
|
||
"方法标注": {
|
||
"小题1": [
|
||
{"方法编号": "M7-2-2-01", "方法名称": "复数乘除运算(代数形式)"}
|
||
],
|
||
"小题2": [
|
||
{"方法编号": "M7-1-2-02", "方法名称": "共轭复数求法"}
|
||
]
|
||
},
|
||
|
||
"题型分类": {
|
||
"一级题型": "综合应用",
|
||
"二级题型": ["选择题", "充要条件", "共轭复数"],
|
||
"综合标签": ["概念理解", "综合考查"]
|
||
},
|
||
|
||
"难度评估": {
|
||
"整体难度": 3,
|
||
"分小题难度": {
|
||
"小题1": 4,
|
||
"小题2": 1
|
||
},
|
||
"难度说明": "第(1)问考查充要条件,需要推导;第(2)问基础概念题"
|
||
}
|
||
}
|
||
]
|
||
} |