note/知识图谱/教科书-数学/选择性必修/knowledge-第六章-计数原理.json
2025-11-19 10:16:05 +08:00

468 lines
16 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"章节信息": {
"章": "第六章",
"节": "6.1 分类加法计数原理与分步乘法计数原理6.2 排列与组合6.3 二项式定理",
"小节": "6.1.1 分类加法计数原理与分步乘法计数原理6.2.1 排列6.2.2 排列数6.2.3 组合6.2.4 组合数6.3.1 二项式定理6.3.2 二项式系数的性质",
"页码范围": "6-48"
},
"knowledge_list": [
{
"编号": "K6-1-1-01",
"层次": "二级",
"名称": "分类加法计数原理",
"类型": "原理/法则",
"核心内容": {
"定义": "完成一件事有两类不同方案在第1类方案中有m种不同的方法在第2类方案中有n种不同的方法那么完成这件事共有N=m+n种不同的方法",
"公式": "$N = m + n$",
"关键特征": "各类方法互不相同,用其中任何一种方法都可以完成这件事"
},
"原理说明": {
"为什么这样建立": "分类加法计数原理解决了'分类'问题的计数,其中各种方法相互独立,用其中任何一种方法都可以做完这件事",
"核心特征": [
"各类方法相互独立",
"每类方法都能单独完成整件事",
"各类方法之间互不重叠"
]
},
"适用条件": {
"必要性": "解决计数问题的基础方法",
"特殊说明": "分类要做到'不重不漏'"
},
"前置知识": ["加法运算", "集合概念"],
"关联内容": {
"包含的子知识点": ["K6-1-1-02 分步乘法计数原理"],
"相关方法": ["分类讨论", "集合分类"],
"教材位置": "选择性必修第6章6.1节 P14-18"
},
"重要程度": "核心",
"考查方式": ["分类计数应用", "方法选择判断", "实际计数问题"]
},
{
"编号": "K6-1-1-02",
"层次": "二级",
"名称": "分步乘法计数原理",
"类型": "原理/法则",
"核心内容": {
"定义": "完成一件事需要两个步骤做第1步有m种不同的方法做第2步有n种不同的方法那么完成这件事共有N=m×n种不同的方法",
"公式": "$N = m \\times n$",
"关键特征": "各个步骤中的方法互相依存,只有每一个步骤都完成才算做完这件事"
},
"原理说明": {
"为什么这样建立": "分步乘法计数原理解决了'分步'问题的计数,其中各个步骤中的方法互相依存,需要所有步骤都完成",
"核心特征": [
"步骤之间相互依存",
"必须完成所有步骤才能完成整件事",
"每个步骤的方法数确定"
]
},
"适用条件": {
"必要性": "解决复杂计数问题的重要方法",
"特殊说明": "分步要做到'步骤完整'"
},
"前置知识": ["乘法运算", "K6-1-1-01 分类加法计数原理"],
"关联内容": {
"包含的子知识点": [],
"相关方法": ["分步分析", "树状图"],
"教材位置": "选择性必修第6章6.1节 P18-26"
},
"重要程度": "核心",
"考查方式": ["分步计数应用", "树状图分析", "复杂计数问题"]
},
{
"编号": "K6-2-1-01",
"层次": "二级",
"名称": "排列的概念",
"类型": "概念/定义",
"核心内容": {
"定义": "从$n$个不同元素中取出$m(m \\le n)$个元素,并按照一定的顺序排成一列,叫做从$n$个不同元素中取出$m$个元素的一个排列",
"关键特征": "元素的互异性和顺序性"
},
"原理说明": {
"为什么这样定义": "排列是解决有序选取问题的数学概念,强调选取元素的顺序关系",
"核心特征": [
"元素互不相同",
"考虑元素的排列顺序",
"从不同元素中选取部分元素"
]
},
"适用条件": {
"必要性": "研究有序计数问题的基础",
"特殊说明": "两个排列相同的充要条件是元素完全相同且排列顺序相同"
},
"前置知识": ["K6-1-1-02 分步乘法计数原理", "有序性概念"],
"关联内容": {
"包含的子知识点": ["K6-2-2-01 排列数"],
"相关方法": ["有序排列", "位置分析"],
"教材位置": "选择性必修第6章6.2.1节 P41-46"
},
"重要程度": "核心",
"考查方式": ["排列判断", "有序计数", "实际应用问题"]
},
{
"编号": "K6-2-2-01",
"层次": "二级",
"名称": "排列数",
"类型": "公式/概念",
"核心内容": {
"定义": "从$n$个不同元素中取出$m(m \\le n)$个元素的所有不同排列的个数,叫做从$n$个不同元素中取出$m$个元素的排列数",
"符号": "$A_n^m$",
"公式1": "$A_n^m = n(n-1)(n-2)\\cdots(n-m+1)$",
"公式2": "$A_n^m = \\frac{n!}{(n-m)!}$"
},
"原理说明": {
"为什么这样建立": "排列数给出了有序选取问题的计数公式,避免了逐个列举的繁琐",
"核心特征": [
"基于分步乘法计数原理",
"考虑选取顺序",
"阶乘形式的简洁表达"
]
},
"适用条件": {
"必要性": "计算排列数量的基础公式",
"特殊说明": "当$m=n$时,$A_n^n = n!$,称为全排列"
},
"前置知识": ["K6-2-1-01 排列的概念", "阶乘概念", "K6-1-1-02 分步乘法计数原理"],
"关联内容": {
"包含的子知识点": ["K6-2-3-01 组合的概念"],
"相关方法": ["排列计算", "阶乘运算"],
"教材位置": "选择性必修第6章6.2.2节 P46-55"
},
"重要程度": "核心",
"考查方式": ["排列数计算", "公式应用", "化简求值"]
},
{
"编号": "K6-2-3-01",
"层次": "二级",
"名称": "组合的概念",
"类型": "概念/定义",
"核心内容": {
"定义": "从$n$个不同元素中取出$m(m \\le n)$个元素作为一组,叫做从$n$个不同元素中取出$m$个元素的一个组合",
"关键特征": "只考虑选取的元素,不考虑选取的顺序"
},
"原理说明": {
"为什么这样定义": "组合是解决无序选取问题的数学概念,关注的是选取哪些元素而不关注顺序",
"核心特征": [
"元素互不相同",
"不考虑元素的排列顺序",
"从不同元素中选取部分元素组成一组"
]
},
"适用条件": {
"必要性": "研究无序计数问题的基础",
"特殊说明": "两个组合只要元素相同就相同,不论顺序如何"
},
"前置知识": ["K6-2-1-01 排列的概念", "无序性概念"],
"关联内容": {
"包含的子知识点": ["K6-2-4-01 组合数"],
"相关方法": ["无序选取", "分组方法"],
"教材位置": "选择性必修第6章6.2.3节 P56-62"
},
"重要程度": "核心",
"考查方式": ["组合判断", "无序计数", "与排列的区分"]
},
{
"编号": "K6-2-4-01",
"层次": "二级",
"名称": "组合数",
"类型": "公式/概念",
"核心内容": {
"定义": "从$n$个不同元素中取出$m(m \\le n)$个元素的所有不同组合的个数,叫做从$n$个不同元素中取出$m$个元素的组合数",
"符号": "$C_n^m$或$\\binom{n}{m}$",
"公式1": "$C_n^m = \\frac{A_n^m}{A_m^m} = \\frac{n(n-1)\\cdots(n-m+1)}{m!}$",
"公式2": "$C_n^m = \\frac{n!}{m!(n-m)!}$"
},
"原理说明": {
"为什么这样建立": "组合数给出了无序选取问题的计数公式,通过排列数与全排列的比值得到",
"核心特征": [
"基于排列数的关系推导",
"不考虑选取顺序",
"对称性:$C_n^m = C_n^{n-m}$"
]
},
"适用条件": {
"必要性": "计算组合数量的基础公式",
"特殊说明": "规定$C_n^0 = 1$"
},
"前置知识": ["K6-2-3-01 组合的概念", "K6-2-2-01 排列数"],
"关联内容": {
"包含的子知识点": ["K6-2-4-02 组合数的性质"],
"相关方法": ["组合计算", "性质应用"],
"教材位置": "选择性必修第6章6.2.4节 P63-73"
},
"重要程度": "核心",
"考查方式": ["组合数计算", "公式化简", "性质证明应用"]
},
{
"编号": "K6-2-4-02",
"层次": "三级",
"名称": "组合数的性质",
"类型": "定理/性质",
"核心内容": {
"性质1": "$C_n^m = C_n^{n-m}$",
"性质2": "$C_{n+1}^m = C_n^m + C_n^{m-1}$"
},
"原理说明": {
"为什么这样建立": "组合数的性质反映了组合的内在规律,简化了组合数的计算和证明",
"核心特征": [
"对称性选取m个元素等于选取n-m个元素",
"递推性:可以从较小组合数递推得到较大组合数",
"与杨辉三角的对应关系"
]
},
"适用条件": {
"必要性": "组合数化简和计算的重要工具",
"特殊说明": "性质在$m=n$时也成立"
},
"前置知识": ["K6-2-4-01 组合数"],
"关联内容": {
"包含的子知识点": [],
"相关方法": ["组合数化简", "递推关系", "杨辉三角"],
"教材位置": "选择性必修第6章6.2.4节 P73-77"
},
"重要程度": "重要",
"考查方式": ["性质证明", "组合数化简", "递推应用"]
},
{
"编号": "K6-3-1-01",
"层次": "二级",
"名称": "二项式定理",
"类型": "定理/公式",
"核心内容": {
"定理": "$(a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + \\cdots + C_n^ka^{n-k}b^k + \\cdots + C_n^nb^n$,其中$n \\in \\mathbb{N}^*$",
"通项公式": "$T_{k+1} = C_n^ka^{n-k}b^k$(第$k+1$项)",
"特殊情况": "$(1+x)^n = C_n^0 + C_n^1x + C_n^2x^2 + \\cdots + C_n^nx^n$"
},
"原理说明": {
"为什么这样建立": "二项式定理是计数原理在多项式展开中的应用,给出了二项式展开的一般规律",
"核心特征": [
"基于计数原理推导",
"系数为组合数",
"指数递减递增规律",
"项数为n+1"
]
},
"适用条件": {
"必要性": "二项式展开的理论基础",
"特殊说明": "适用于任意正整数次幂的二项式展开"
},
"前置知识": ["K6-2-4-01 组合数", "多项式乘法", "K6-1-1-02 分步乘法计数原理"],
"关联内容": {
"包含的子知识点": ["K6-3-2-01 二项式系数的性质"],
"相关方法": ["多项式展开", "通项应用"],
"教材位置": "选择性必修第6章6.3.1节 P78-88"
},
"重要程度": "核心",
"考查方式": ["二项式展开", "通项公式应用", "特定项系数求解"]
},
{
"编号": "K6-3-2-01",
"层次": "三级",
"名称": "二项式系数的性质",
"类型": "性质/特征",
"核心内容": {
"对称性": "与首末两端'等距离'的两个二项式系数相等,即$C_n^k = C_n^{n-k}$",
"增减性与最大值": "$k < \\frac{n+1}{2}$$C_n^k$$k$$k > \\frac{n+1}{2}$$C_n^k$$k$",
"": "$C_n^0 + C_n^1 + \\cdots + C_n^n = 2^n$",
"": "$C_n^0 + C_n^2 + C_n^4 + \\cdots = C_n^1 + C_n^3 + C_n^5 + \\cdots = 2^{n-1}$"
},
"": {
"": "便",
"": [
"",
"",
"2",
""
]
},
"": {
"": "",
"": "$n$$n$"
},
"": ["K6-3-1-01 ", "K6-2-4-01 "],
"": {
"": [],
"": ["", "", ""],
"": "66.3.2 P89-99"
},
"": "",
"": ["", "", ""]
},
{
"": "K6-2-2-02",
"": "",
"": "",
"": "/",
"": {
"": "$n$$n$",
"": "$A_n^n = n! = n \\times (n-1) \\times \\cdots \\times 2 \\times 1$",
"": "$0! = 1$"
},
"": {
"": "",
"": [
"",
"",
""
]
},
"": {
"": "",
"": "1n"
},
"": ["K6-2-2-01 ", ""],
"": {
"": [],
"": ["", ""],
"": "66.2.2 P52-54"
},
"": "",
"": ["", "", ""]
},
{
"": "K6-1-1-03",
"": "",
"": "",
"": "/",
"": {
"": "''",
"": "''",
"": "''"
},
"": {
"": "使",
"": [
"",
"",
""
]
},
"": {
"": "",
"": ""
},
"": ["K6-1-1-01 ", "K6-1-1-02 "],
"": {
"": [],
"": ["", ""],
"": "66.1 P26-29"
},
"": "",
"": ["", "", ""]
},
{
"": "K6-2-5-01",
"": "",
"": "",
"": "/",
"": {
"": "$n$$m(m \\le n)$",
"": "",
"": "$A_n^m = C_n^m \\times A_m^m$$m$"
},
"": {
"": "",
"": [
"",
"",
""
]
},
"": {
"": "",
"": ""
},
"": ["K6-2-2-01 ", "K6-2-4-01 "],
"": {
"": [],
"": ["", ""],
"": "66.2.3 P56-62"
},
"": "",
"": ["", "", ""]
}
]
}