note/知识图谱/教科书-数学/all_副本/knowledge-选择性必修第四章-数列.json
2025-11-19 10:16:05 +08:00

612 lines
20 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"章节信息": {
"章": "第四章",
"节": "4.1 数列的概念",
"小节": "4.1.1 数列的概念4.1.2 等差数列的概念4.1.3 等比数列的概念4.1.4 数学归纳法",
"页码范围": "7-63"
\},
"knowledge_list": [
\{
"编号": "K4-1-1-01",
"层次": "二级",
"名称": "数列的概念",
"类型": "概念/定义",
"核心内容": \{
"定义": "按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项",
"首项": "第1项称为首项用$a_1$表示",
"一般形式": "$a_1, a_2, \\dots, a_n, \\dots$,简记为$\\{a_n\\}$"
\},
"原理说明": \{
"为什么这样定义": "数列是描述有序数据的重要数学工具,反映了离散函数的特征",
"核心特征": [
"具有确定顺序",
"每一项都有确定位置",
"不能交换位置"
]
\},
"适用条件": \{
"必要性": "研究离散变化规律的基础",
"特殊说明": "项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列"
\},
"前置知识": ["函数概念", "有序排列"],
"关联内容": \{
"包含的子知识点": ["K4-1-1-02 数列的表示方法", "K4-1-1-03 数列的分类"],
"相关方法": ["表格表示", "图象表示", "代数分析"],
"教材位置": "选择性必修第一册第4章4.1节 P7-8"
\},
"重要程度": "核心",
"考查方式": ["概念理解", "表示方法选择", "数列识别"]
\},
\{
"编号": "K4-1-1-02",
"层次": "三级",
"名称": "数列的表示方法",
"类型": "方法/表示",
"核心内容": \{
"表格表示": "将序号和对应的项列成表格",
"图象表示": "在坐标系中描出点$(n,a_n)$",
"通项公式": "第$n$项$a_n$与序号$n$的对应关系式",
"递推公式": "相邻项之间的关系式"
\},
"原理说明": \{
"为什么需要多种表示": "不同的表示方法适合不同的分析需求",
"核心特征": [
"表格:直观明了,便于数据管理",
"图象:直观形象,便于观察规律",
"通项公式:便于计算和推导",
"递推公式:便于递推计算"
]
\},
"适用条件": \{
"必要性": "数列研究的必备工具",
"特殊说明": "不同问题选择最适合的表示方法"
\},
"前置知识": ["K4-1-1-01 数列的概念"],
"关联内容": \{
"包含的子知识点": [],
"相关方法": ["数据分析", "规律发现", "问题建模"],
"教材位置": "选择性必修第一册第4章4.1节 P7-8"
\},
"重要程度": "核心",
"考查方式": ["表示方法选择", "数据分析", "规律探索"]
\},
\{
"编号": "K4-1-1-03",
"层次": "三级",
"名称": "数列的分类",
"类型": "概念/分类",
"核心内容": \{
"递增数列": "从第2项起每一项都大于前一项的数列",
"递减数列": "从第2项起每一项都小于前一项的数列",
"常数列": "各项都相等的数列"
\},
"原理说明": \{
"为什么需要分类": "不同类型数列有不同的变化特征和规律",
"核心特征": [
"递增数列:项数单调递增",
"递减数列:项数单调递减",
"常数列:项数恒定不变"
]
\},
"适用条件": \{
"必要性": "研究数列变化规律的需要",
"特殊说明": "可以通过相邻项的大小关系判断数列类型"
\},
"前置知识": ["K4-1-1-01 数列的概念"],
"关联内容": \{
"包含的子知识点": [],
"相关方法": ["单调性判断", "趋势分析", "变化规律研究"],
"教材位置": "选择性必修第一册第4章4.1节 P9"
\},
"重要程度": "基础",
"考查方式": ["单调性判断", "趋势分析"]
\},
\{
"编号": "K4-1-1-04",
"层次": "三级",
"名称": "数列的通项公式",
"类型": "公式/概念",
"核心内容": \{
"定义": "第$n$项$a_n$与序号$n$之间的对应关系可以用一个式子来表示,这个式子叫做这个数列的通项公式",
"作用": "根据通项公式可以写出数列的各项",
"类型": "数列解析式"
\},
"原理说明": \{
"为什么需要通项公式": "通项公式是数列的代数表示,便于计算和分析",
"核心特征": [
"唯一性:一个数列只有一个通项公式",
"普遍性:通项公式适用于所有项",
"计算效率:避免逐项计算"
]
\},
"适用条件": \{
"必要性": "定量研究数列性质的基础",
"特殊说明": "不同数列可能需要不同的通项公式形式"
\},
"前置知识": ["K4-1-1-01 数列的概念", "函数概念", "代数式运算"],
"关联内容": \{
"包含的子知识点": [],
"相关方法": ["公式推导", "性质研究", "数值计算"],
"教材位置": "选择性必修第一册第4章4.1节 P9"
\},
"重要程度": "核心",
"考查方式": ["通项公式求解", "公式推导", "代数运算"]
\},
\{
"编号": "K4-1-1-05",
"层次": "三级",
"名称": "数列的递推公式",
"类型": "公式/方法",
"核心内容": \{
"定义": "相邻两项或多项之间的关系可以用一个式子来表示的式子",
"作用": "已知首项或前几项以及递推公式,就能求出数列的每一项"
\},
"原理说明": \{
"为什么需要递推公式": "递推公式反映了数列的内在联系和变化规律",
"核心特征": [
"反映相邻项间的关系",
"便于递推计算",
"体现数列的生成规律"
]
\},
"适用条件": \{
"必要性": "已知递推关系时求通项公式",
"特殊说明": "递推公式不唯一"
\},
"前置知识": ["K4-1-1-01 数列的概念", "代数关系"],
"关联内容": \{
"包含的子知识点": [],
"相关方法": ["递推计算", "通项公式推导", "规律探索"],
"教材位置": "选择性必修第一册第4章4.1节 P10-11"
\},
"重要程度": "重要",
"考查方式": ["递推公式建立", "递推计算", "通项公式推导"]
\},
\{
"编号": "K4-1-1-06",
"层次": "三级",
"名称": "数列的前n项和",
"类型": "概念/公式",
"核心内容": \{
"定义": "数列$\{a_n\}$从第1项起到第$n$项止的各项之和,称为数列$\{a_n\}$的前$n$项和,记作$S_n$,即$S_n=a_1+a_2+\\dots+a_n$",
"和公式": "如果$S_n$与序号$n$之间的对应关系可以用一个式子来表示,这个式子叫做数列的前$n$项和公式"
\},
"原理说明": \{
"为什么需要前n项和公式": "前n项和是数列累积效应的定量描述",
"核心特征": [
"反映累积效应",
"便",
"广"
]
\},
"": \{
"": "",
"": "n"
\},
"": ["K4-1-1-01 ", ""],
"": \{
"": ["K4-1-1-05 "],
"": ["", "", ""],
"": "44.1 P11-12"
\},
"": "",
"": ["n", "", ""]
\},
\{
"": "K4-2-1-01",
"": "",
"": "",
"": "/",
"": \{
"": "2",
"": "$d$"
\},
"": \{
"": "",
"": [
"",
"",
"线"
]
\},
"": \{
"": "线",
"": ""
\},
"": ["K4-1-1-01 ", "", ""],
"": \{
"": ["K4-2-1-02 ", "K4-2-2-01 n"],
"": ["线", "", ""],
"": "44.2.1 P17-18"
\},
"": "",
"": ["", "", ""]
\},
\{
"": "K4-2-1-02",
"": "",
"": "",
"": "",
"": \{
"": "$a_n = a_1 + (n-1)d \\quad (n \\ge 1)$",
"": "$a_1$$d$"
\},
"": \{
"": "",
"": [
"线",
"",
"便"
]
\},
"": \{
"": "",
"": ""
\},
"": ["K4-2-1-01 ", "", ""],
"": \{
"": ["K4-2-2-01 n"],
"": ["", "", ""],
"": "44.2.1 P18-19"
\},
"": "",
"": ["", "", ""]
\},
\{
"": "K4-2-2-01",
"": "",
"": "n",
"": "",
"": \{
"1": "$S_n = \\frac\{n(a_1+a_n)\}\{2\}$",
"2": "$S_n = na_1 + \\frac\{n(n-1)\}\{2\}d$",
"": "$q \\neq 1$使1$q=1$$S_n = na_1$"
\},
"": \{
"": "",
"": [
"",
"",
""
]
\},
"": \{
"": "",
"": "12"
\},
"": ["K4-2-1-01 ", "K4-2-1-02 ", ""],
"": \{
"": [],
"": ["", "", ""],
"": "44.2.2 P23-27"
\},
"": "",
"": ["n", "", ""]
\},
\{
"": "K4-3-1-01",
"": "",
"": "",
"": "/",
"": \{
"": "2",
"": "$q$$q \\neq 0$"
\},
"": \{
"": "",
"": [
"",
"/",
""
]
\},
"": \{
"": "/",
"": "0"
\},
"": ["K4-1-1-01 ", "", ""],
"": \{
"": ["K4-3-1-02 ", "K4-3-2-01 n"],
"": ["", "", ""],
"": "44.3.1 P32-33"
\},
"": "",
"": ["", "", ""]
\},
\{
"": "K4-3-1-02",
"": "",
"": "",
"": "",
"": \{
"": "$a_n = a_1 q^\{n-1\} \\quad (n \\ge 1)",
"": "$a_1$$q$"
\},
"": \{
"": "",
"": [
"",
"",
""
]
\},
"": \{
"": "",
"": ""
\},
"": ["K4-3-1-01 ", "", ""],
"": \{
"": ["K4-3-2-01 n"],
"": ["", "", ""],
"": "44.3.1 P34"
\},
"": "",
"": ["", "", ""]
\},
\{
"": "K4-3-2-01",
"": "",
"": "n",
"": "",
"": \{
"1": "$S_n = \\frac\{a_1(1-q^n)\}\{1-q\} \\quad (q \\neq 1)$",
"2": "$S_n = \\frac\{a_1 - a_n q\}\{1-q\} \\quad (q \\neq 1)$",
"": "$q=1$$S_n = na_1$"
\},
"": \{
"": "",
"": [
"",
"/",
""
]
\},
"": \{
"": "",
"": "$q=1$$S_n = na_1$"
\},
"": ["K4-3-1-02 ", ""],
"": \{
"": [],
"": ["", "", ""],
"": "44.3.2 P39-41"
\},
"": "",
"": ["n", "", ""]
\},
\{
"": "K4-4-1-01",
"": "",
"": "",
"": "/",
"": \{
"": "1. ($n=n_0$)2. ($n=k$$n=k+1$)",
"": "$n_0$$n$"
\},
"": \{
"": "",
"": [
"",
"",
""
]
\},
"": \{
"": "",
"": ""
\},
"": ["", ""],
"": \{
"": ["K4-4-1-02 ", "K4-4-1-03 "],
"": ["", "", ""],
"": "44.4 P49-52"
\},
"": "",
"": ["", "", ""]
\},
\{
"": "K4-4-1-02",
"": "",
"": "",
"": "/",
"": \{
"": "$a_n=a_1+(n-1)d$",
"": "$a_n=a_1q^\{n-1\}$",
"": "n"
\},
"": \{
"": "",
"": [
"",
"",
""
]
\},
"": \{
"": "",
"": ""
\},
"": ["K4-4-1-01 ", "", ""],
"": \{
"": [],
"": ["", "", ""],
"": "44.4 P53-56"
\},
"": "",
"": ["", "", ""]
\},
\{
"": "K4-1-2-01",
"": "",
"": "",
"": "/",
"": \{
"": "$a$$b$$G$使$a, G, b$$G$$a$$b$",
"": "$2G = a + b$"
\},
"": \{
"": "",
"": [
"$a$$b$",
"",
""
]
\},
"": \{
"": "",
"": ""
\},
"": ["K4-2-1-01 ", ""],
"": \{
"": [],
"": ["", "", ""],
"": "44.2.1 P18"
\},
"": "",
"": ["", "", ""]
\},
\{
"": "K4-3-1-03",
"": "",
"": "",
"": "/",
"": \{
"": "$a$$b$$G$使$a, G, b$$G$$a$$b$",
"": "$G^2 = ab$",
"": "$ab > 0$"
\},
"": \{
"": "",
"": [
"$a$$b$",
"",
"$G = \\sqrt\{ab\}$"
]
\},
"": \{
"": "",
"": "$ab > 0$$a \\neq 0$"
\},
"": ["K4-3-1-01 ", "", "", ""],
"": \{
"": [],
"": ["", "", ""],
"": "44.3.1 P33"
\},
"": "",
"": ["", "", ""]
}
]
}