{
"knowledge": [
{
"id": "K1-1-01",
"name": "集合",
"type": "概念",
"definition": "把一些元素组成的总体叫做集合(set),简称为集。",
"prerequisite": []
},
{
"id": "K1-1-02",
"name": "元素",
"type": "概念",
"definition": "组成集合的研究对象统称为元素(element)。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-1-03",
"name": "集合元素的特性",
"type": "概念",
"definition": "集合的元素具有确定性、互异性(不重复出现)。",
"prerequisite": [
"K1-1-01",
"K1-1-02"
]
},
{
"id": "K1-1-04",
"name": "元素与集合的关系",
"type": "概念",
"definition": "如果a是集合A的元素,就说a属于集合A,记作a ∈ A;如果a不是集合A中的元素,就说a不属于集合A,记作a ∉ A。",
"prerequisite": [
"K1-1-01",
"K1-1-02"
]
},
{
"id": "K1-1-05",
"name": "常用数集",
"type": "概念",
"definition": "非负整数集(自然数集)记作N;正整数集记作N*或N+;整数集记作Z;有理数集记作Q;实数集记作R。",
"prerequisite": []
},
{
"id": "K1-1-06",
"name": "列举法",
"type": "概念",
"definition": "把集合的所有元素一一列举出来,并用花括号“{ }”括起来表示集合的方法。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-1-07",
"name": "描述法",
"type": "概念",
"definition": "把集合中所有具有共同特征P(x)的元素x所组成的集合表示为{x ∈ A | P(x)}的方法。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-2-01",
"name": "子集",
"type": "概念",
"definition": "对于两个集合A, B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A ⊆ B (或 B ⊇ A)。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-2-02",
"name": "集合相等",
"type": "概念",
"definition": "如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B。即 A ⊆ B 且 B ⊆ A。",
"prerequisite": [
"K1-2-01"
]
},
{
"id": "K1-2-03",
"name": "真子集",
"type": "概念",
"definition": "如果集合A ⊆ B,但存在元素x ∈ B,且x ∉ A,就称集合A是集合B的真子集,记作A ⊊ B。",
"prerequisite": [
"K1-2-01"
]
},
{
"id": "K1-2-04",
"name": "空集",
"type": "概念",
"definition": "不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集。",
"prerequisite": [
"K1-2-01"
]
},
{
"id": "K1-3-01",
"name": "并集",
"type": "概念",
"definition": "由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A ∪ B。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-3-02",
"name": "交集",
"type": "概念",
"definition": "由所有属于集合A且属于集合B的元素组成的集合,称为集合A与B的交集,记作A ∩ B。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-3-03",
"name": "全集",
"type": "概念",
"definition": "如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-3-04",
"name": "补集",
"type": "概念",
"definition": "对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作C_U A。",
"prerequisite": [
"K1-3-03"
]
},
{
"id": "K1-3-05",
"name": "有限集元素个数公式",
"type": "公式",
"definition": "对任意两个有限集合 A, B, 有 card(A ∪ B) = card(A) + card(B) - card(A ∩ B)。",
"prerequisite": [
"K1-3-01",
"K1-3-02"
]
},
{
"id": "K1-4-01",
"name": "命题",
"type": "概念",
"definition": "用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。",
"prerequisite": []
},
{
"id": "K1-4-02",
"name": "充分条件",
"type": "概念",
"definition": "如果“若p,则q”为真命题(p ⇒ q),则p是q的充分条件。",
"prerequisite": [
"K1-4-01"
]
},
{
"id": "K1-4-03",
"name": "必要条件",
"type": "概念",
"definition": "如果“若p,则q”为真命题(p ⇒ q),则q是p的必要条件。",
"prerequisite": [
"K1-4-01"
]
},
{
"id": "K1-4-04",
"name": "充要条件",
"type": "概念",
"definition": "如果“若p,则q”和它的逆命题“若q,则p”均为真命题(p ⇔ q),则p是q的充分必要条件,简称充要条件。",
"prerequisite": [
"K1-4-02",
"K1-4-03"
]
},
{
"id": "K1-5-01",
"name": "全称量词",
"type": "概念",
"definition": "短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示。",
"prerequisite": [
"K1-4-01"
]
},
{
"id": "K1-5-02",
"name": "全称量词命题",
"type": "概念",
"definition": "含有全称量词的命题,叫做全称量词命题。形式为 ∀x ∈ M, p(x)。",
"prerequisite": [
"K1-5-01"
]
},
{
"id": "K1-5-03",
"name": "存在量词",
"type": "概念",
"definition": "短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示。",
"prerequisite": [
"K1-4-01"
]
},
{
"id": "K1-5-04",
"name": "存在量词命题",
"type": "概念",
"definition": "含有存在量词的命题,叫做存在量词命题。形式为 ∃x ∈ M, p(x)。",
"prerequisite": [
"K1-5-03"
]
},
{
"id": "K1-5-05",
"name": "全称量词命题的否定",
"type": "规则",
"definition": "全称量词命题 ∀x ∈ M, p(x) 的否定是存在量词命题 ∃x ∈ M, ¬p(x)。",
"prerequisite": [
"K1-5-02",
"K1-5-04"
]
},
{
"id": "K1-5-06",
"name": "存在量词命题的否定",
"type": "规则",
"definition": "存在量词命题 ∃x ∈ M, p(x) 的否定是全称量词命题 ∀x ∈ M, ¬p(x)。",
"prerequisite": [
"K1-5-02",
"K1-5-04"
]
},
{
"id": "K2-1-01",
"name": "不等式性质",
"type": "定理",
"definition": "不等式的基本性质,包括对称性、传递性、加法法则、乘法法则(分正数和负数两种情况)、同向不等式相加、同向同正不等式相乘、开方法则。",
"prerequisite": []
},
{
"id": "K2-2-01",
"name": "基本不等式",
"type": "定理",
"definition": "对任意两个正数a, b,有 (a+b)/2 ≥ √ab,当且仅当 a=b 时等号成立。即两个正数的算术平均数不小于它们的几何平均数。",
"prerequisite": [
"K2-1-01"
]
},
{
"id": "K2-3-01",
"name": "一元二次不等式",
"type": "概念",
"definition": "含有一个未知数,并且未知数的最高次数是2的不等式,如 ax^2+bx+c>0 或 ax^2+bx+c<0 (a≠0)。",
"prerequisite": []
},
{
"id": "K3-1-1-01",
"name": "函数",
"type": "概念",
"definition": "设A, B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f: A -> B为从集合A到集合B的一个函数,记作 y=f(x), x∈A。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K3-1-1-02",
"name": "定义域",
"type": "概念",
"definition": "函数自变量x的取值范围A叫做函数的定义域。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-1-1-03",
"name": "值域",
"type": "概念",
"definition": "函数值的集合 {f(x)|x∈A} 叫做函数的值域。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-1-2-01",
"name": "函数的表示法",
"type": "概念",
"definition": "表示函数关系的方法,主要有解析法、列表法、图象法。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-1-2-02",
"name": "分段函数",
"type": "概念",
"definition": "在定义域的不同部分,有不同的对应关系来表示的函数。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-2-1-01",
"name": "函数的单调性",
"type": "概念",
"definition": "描述函数值随自变量增大而增大(单调递增)或减小(单调递减)的性质。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-2-1-02",
"name": "函数的最大(小)值",
"type": "概念",
"definition": "函数在其定义域上所有函数值中的最大值或最小值。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-2-2-01",
"name": "函数的奇偶性",
"type": "概念",
"definition": "函数的图象关于y轴对称(偶函数)或关于原点对称(奇函数)的性质。偶函数满足f(-x)=f(x),奇函数满足f(-x)=-f(x)。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-3-01",
"name": "幂函数",
"type": "概念",
"definition": "形如 y=x^α (α是常数) 的函数称为幂函数,其中x是自变量。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K4-1-1-01",
"name": "n次方根",
"type": "概念",
"definition": "如果x^n = a,那么x叫做a的n次方根,其中n>1且n∈N*。",
"prerequisite": []
},
{
"id": "K4-1-1-02",
"name": "分数指数幂",
"type": "概念",
"definition": "规定a^(m/n) = n√a^m (a>0, m, n∈N*, n>1) 和 a^(-m/n) = 1/a^(m/n) (a>0, m, n∈N*, n>1)。",
"prerequisite": [
"K4-1-1-01"
]
},
{
"id": "K4-1-2-01",
"name": "实数指数幂",
"type": "概念",
"definition": "将指数的取值范围从有理数推广到实数。无理数指数幂a^α (a>0) 是一个确定的实数。",
"prerequisite": [
"K4-1-1-02"
]
},
{
"id": "K4-2-1-01",
"name": "指数函数",
"type": "概念",
"definition": "函数 y=a^x (a>0, 且a≠1) 叫做指数函数,其中x是自变量,定义域是R。",
"prerequisite": [
"K4-1-2-01",
"K3-1-1-01"
]
},
{
"id": "K4-2-2-01",
"name": "指数函数的图像与性质",
"type": "定理",
"definition": "当a>1时,指数函数是增函数;当00, 且a≠1),那么数x叫做以a为底N的对数,记作x=log_a(N)。",
"prerequisite": [
"K4-1-2-01"
]
},
{
"id": "K4-3-2-01",
"name": "对数的运算法则",
"type": "公式",
"definition": "log_a(MN) = log_a(M) + log_a(N); log_a(M/N) = log_a(M) - log_a(N); log_a(M^n) = n*log_a(M)。",
"prerequisite": [
"K4-3-1-01"
]
},
{
"id": "K4-3-2-02",
"name": "换底公式",
"type": "公式",
"definition": "log_a(b) = log_c(b) / log_c(a) (a>0, a≠1; c>0, c≠1; b>0)。",
"prerequisite": [
"K4-3-1-01"
]
},
{
"id": "K4-4-1-01",
"name": "对数函数",
"type": "概念",
"definition": "函数 y = log_a(x) (a>0, 且a≠1) 叫做对数函数,其中x是自变量,定义域是(0, +∞)。",
"prerequisite": [
"K4-3-1-01",
"K3-1-1-01"
]
},
{
"id": "K4-4-2-01",
"name": "对数函数的图像与性质",
"type": "定理",
"definition": "当a>1时,对数函数是增函数;当00 (或<0) 且 a>0 的形式。",
"计算判别式 Δ = b^2-4ac。",
"根据Δ的符号判断对应方程 ax^2+bx+c=0 的根的情况。",
"结合二次函数 y=ax^2+bx+c 的图象,确定不等式的解集。"
],
"required_knowledge": [
"K2-3-01"
]
},
{
"id": "M3-2-01",
"name": "函数单调性的证明方法(定义法)",
"type": "证明方法",
"steps": [
"设x1, x2是区间I内的任意两个值,且x1 < x2。",
"作差 f(x1) - f(x2)。",
"对差式进行变形,通常是因式分解、配方等。",
"判断差 f(x1) - f(x2) 的符号。",
"根据定义得出结论:若f(x1) < f(x2),则函数在I上单调递增;若f(x1) > f(x2),则函数在I上单调递-减。"
],
"required_knowledge": [
"K3-2-1-01"
]
},
{
"id": "M3-2-02",
"name": "函数奇偶性的判断方法",
"type": "解题方法",
"steps": [
"首先确定函数的定义域是否关于原点对称。",
"计算f(-x)的表达式。",
"比较f(-x)与f(x)的关系:如果f(-x)=f(x),则是偶函数;如果f(-x)=-f(x),则是奇函数;否则为非奇非偶函数。"
],
"required_knowledge": [
"K3-2-2-01"
]
},
{
"id": "M4-5-01",
"name": "二分法求方程近似解",
"type": "解题方法",
"steps": [
"确定零点所在的初始区间[a,b],验证f(a)f(b)<0。",
"求区间(a,b)的中点c。",
"计算f(c)。若f(c)=0,则c是零点;若f(a)f(c)<0,则令b=c;若f(c)f(b)<0,则令a=c。",
"判断区间长度是否小于给定的精确度ε。若|a-b|<ε,则得到近似解;否则重复步骤2-4。"
],
"required_knowledge": [
"K4-5-1-01",
"K4-5-1-02"
]
},
{
"id": "M5-6-01",
"name": "五点法画正弦/余弦函数简图",
"type": "解题方法",
"steps": [
"令 z = ωx+φ。",
"找出z取 0, π/2, π, 3π/2, 2π 时对应的五个关键点。",
"计算这五个关键点对应的x值。",
"计算这五个关键点对应的y值。",
"在坐标系中描出这五个点,并用光滑的曲线连接起来。"
],
"required_knowledge": [
"K5-4-1-01",
"K5-6-01"
]
},
{
"id": "M5-6-02",
"name": "由y=sinx图像得到y=Asin(ωx+φ)图像的变换步骤",
"type": "解题方法",
"steps": [
"相位变换:将y=sinx的图像向左(φ>0)或向右(φ<0)平移|φ|个单位,得到y=sin(x+φ)的图像。",
"周期变换:将y=sin(x+φ)的图像上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的1/ω倍,得到y=sin(ωx+φ)的图像。",
"振幅变换:将y=sin(ωx+φ)的图像上所有点的纵坐标伸长(A>1)或缩短(00,q: x>0,y>0; (4) p: x=1 是一元二次方程 ax²+bx+c=0 的一个根,q: a+b+c=0 (a ≠ 0).",
"knowledge": [
"K1-4-04"
],
"methods": [
"M1-4-01"
]
},
{
"id": "T1-4-E04",
"type": "例题",
"content": "已知:☉O 的半径为r,圆心O到直线l的距离为d。求证:d=r是直线l与☉O相切的充要条件。",
"knowledge": [
"K1-4-04"
],
"methods": [
"M1-4-01"
]
},
{
"id": "T1-5-E01",
"type": "例题",
"content": "判断下列全称量词命题的真假: (1) 所有的素数都是奇数; (2) ∀ x ∈ R, |x|+1 ≥ 1; (3) 对任意一个无理数 x, x² 也是无理数.",
"knowledge": [
"K1-5-02"
],
"methods": []
},
{
"id": "T1-5-E02",
"type": "例题",
"content": "判断下列存在量词命题的真假: (1) 有一个实数 x,使 x²+2x+3=0; (2) 平面内存在两条相交直线垂直于同一条直线; (3) 有些平行四边形是菱形.",
"knowledge": [
"K1-5-04"
],
"methods": []
},
{
"id": "T1-5-E03",
"type": "例题",
"content": "写出下列全称量词命题的否定: (1) 所有能被3整除的整数都是奇数; (2) 每一个四边形的四个顶点在同一个圆上; (3) 对任意x ∈ Z, x²的个位数字不等于3.",
"knowledge": [
"K1-5-05"
],
"methods": []
},
{
"id": "T1-5-E04",
"type": "例题",
"content": "写出下列存在量词命题的否定: (1) ∃ x ∈ R, x+2 ≤ 0; (2) 有的三角形是等边三角形; (3) 有一个偶数是素数.",
"knowledge": [
"K1-5-06"
],
"methods": []
},
{
"id": "T1-5-E05",
"type": "例题",
"content": "写出下列命题的否定,并判断真假: (1) 任意两个等边三角形都相似; (2) ∃ x ∈ R, x²-x+1=0.",
"knowledge": [
"K1-5-05",
"K1-5-06"
],
"methods": []
},
{
"id": "T2-1-E01",
"type": "例题",
"content": "比较(x+2)(x+3)和(x+1)(x+4)的大小.",
"knowledge": [
"K2-1-01"
],
"methods": []
},
{
"id": "T2-1-E02",
"type": "例题",
"content": "已知 a>b>0, c<0,求证 c/a > c/b.",
"knowledge": [
"K2-1-01"
],
"methods": []
},
{
"id": "T2-2-E01",
"type": "例题",
"content": "已知 x>0, 求 x + 1/x 的最小值。",
"knowledge": [
"K2-2-01"
],
"methods": []
},
{
"id": "T2-2-E02",
"type": "例题",
"content": "已知 x,y 都是正数,求证: (1) 如果积 xy 等于定值 P, 那么当 x=y 时,和 x+y 有最小值 2√P; (2) 如果和 x+y 等于定值 S, 那么当 x=y 时, 积 xy 有最大值 S²/4.",
"knowledge": [
"K2-2-01"
],
"methods": []
},
{
"id": "T2-2-E03",
"type": "例题",
"content": "(1) 用篱笆围一个面积为100 m²的矩形菜园, 当这个矩形的边长为多少时, 所用篱笆最短? 最短篱笆的长度是多少? (2) 用一段长为36 m的篱笆围成一个矩形菜园, 当这个矩形的边长为多少时, 菜园的面积最大? 最大面积是多少?",
"knowledge": [
"K2-2-01"
],
"methods": []
},
{
"id": "T2-2-E04",
"type": "例题",
"content": "某工厂要建造一个长方体形无盖贮水池,其容积为 4800 m³,深为 3 m.如果池底每平方米的造价为 150 元,池壁每平方米的造价为 120 元,那么怎样设计水池能使总造价最低?最低总造价是多少?",
"knowledge": [
"K2-2-01"
],
"methods": []
},
{
"id": "T2-3-E01",
"type": "例题",
"content": "求不等式 x²-5x+6>0 的解集.",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T2-3-E02",
"type": "例题",
"content": "求不等式 9x²-6x+1>0 的解集.",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T2-3-E03",
"type": "例题",
"content": "求不等式 -x²+2x-3>0 的解集.",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T2-3-E04",
"type": "例题",
"content": "一家车辆制造厂引进了一条摩托车整车装配流水线, 这条流水线生产的摩托车数量 x (单位: 辆) 与创造的价值 y (单位: 元) 之间有如下的关系: y=-20x²+2200x. 若这家工厂希望在一个星期内利用这条流水线创收60000元以上, 则在一个星期内大约应该生产多少辆摩托车?",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T2-3-E05",
"type": "例题",
"content": "某种汽车在水泥路面上的刹车距离 s (单位:m) 和汽车刹车前的车速 v (单位:km/h) 之间有如下关系:s=v/20+v²/180。在一次交通事故中,测得这种车的刹车距离大于 39.5 m,那么这辆汽车刹车前的车速至少为多少 (精确到 1 km/h)?",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T3-1-E01",
"type": "例题",
"content": "试构建一个问题情境,使其中的变量关系可以用解析式 y=x(10-x) 来描述.",
"knowledge": [
"K3-1-1-01",
"K3-1-1-02",
"K3-1-1-03"
],
"methods": []
},
{
"id": "T3-1-E02",
"type": "例题",
"content": "已知函数 f(x)=√(x+3) + 1/(x+2),(1) 求函数的定义域;(2) 求 f(-3), f(2/3) 的值;(3) 当 a ≥ 0 时,求 f(a), f(a-1) 的值。",
"knowledge": [
"K3-1-1-02"
],
"methods": []
},
{
"id": "T3-1-E03",
"type": "例题",
"content": "下列函数中哪个与函数 y=x 是同一个函数?(1) y=(√x)²; (2) u=∛(v³); (3) y=√x²; (4) m=n²/n.",
"knowledge": [
"K3-1-1-01",
"K3-1-1-02"
],
"methods": []
},
{
"id": "T3-1-E04",
"type": "例题",
"content": "某种笔记本的单价是5元, 买 x (x ∈ {1, 2, 3, 4, 5}) 个笔记本需要 y 元. 试用函数的三种表示法表示函数 y=f(x).",
"knowledge": [
"K3-1-2-01"
],
"methods": []
},
{
"id": "T3-1-E05",
"type": "例题",
"content": "画出函数y=|x|的图象.",
"knowledge": [
"K3-1-2-01",
"K3-1-2-02"
],
"methods": []
},
{
"id": "T3-1-E06",
"type": "例题",
"content": "给定函数 f(x)=x+1, g(x)=(x+1)², x ∈ R, 1. 在同一直角坐标系中画出函数 f(x), g(x) 的图象; 2. ∀ x ∈ R, 用 M(x) 表示 f(x), g(x) 中的最大者, 记为 M(x)=max{f(x), g(x)}. 请分别用图象法和解析法表示函数 M(x).",
"knowledge": [
"K3-1-2-01",
"K3-1-2-02"
],
"methods": []
},
{
"id": "T3-1-E07",
"type": "例题",
"content": "表3.1-4 是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表. 请你对这三位同学在高一学年的数学学习情况做一个分析.",
"knowledge": [
"K3-1-2-01"
],
"methods": []
},
{
"id": "T3-1-E08",
"type": "例题",
"content": "依法纳税是每个公民应尽的义务。根据2019年1月1日起的《中华人民共和国个人所得税法》规定,个税税额 = 应纳税所得额 × 税率 - 速算扣除数。应纳税所得额 = 综合所得收入额 - 60000 - 专项扣除 - 专项附加扣除 - 其他扣除。税率表如文所示。 (1) 设全年应纳税所得额为t,应缴纳个税税额为y,求y=f(t),并画出图象; (2) 小王全年综合所得收入额为117600元,社保公积金占收入额20%,专项附加扣除9600元,其他扣除560元,求他全年应缴纳的个税。",
"knowledge": [
"K3-1-2-01",
"K3-1-2-02"
],
"methods": []
},
{
"id": "T3-2-E01",
"type": "例题",
"content": "根据定义,研究函数 f(x)=kx+b(k ≠ 0) 的单调性.",
"knowledge": [
"K3-2-1-01"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-2-E02",
"type": "例题",
"content": "物理学中的玻意耳定律 p=k/V (k为正常数) 告诉我们,对于一定质量的气体,当其温度不变时,体积V减小,压强p将增大.试对此用函数的单调性证明.",
"knowledge": [
"K3-2-1-01"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-2-E03",
"type": "例题",
"content": "根据定义证明函数 y=x + 1/x 在区间 (1, +∞) 上单调递增.",
"knowledge": [
"K3-2-1-01"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-2-E04",
"type": "例题",
"content": "“菊花”烟花是最壮观的烟花之一, 制造时一般是期望在它达到最高点时爆裂. 如果烟花距地面的高度 h (单位: m) 与时间 t (单位: s) 之间的关系为 h(t)=-4.9t²+14.7t+18, 那么烟花冲出后什么时候是它爆裂的最佳时刻? 这时距地面的高度是多少 (精确到 1m)?",
"knowledge": [
"K3-2-1-02"
],
"methods": []
},
{
"id": "T3-2-E05",
"type": "例题",
"content": "已知函数 f(x) = 2/(x-1) (x ∈ [2, 6]), 求函数的最大值和最小值.",
"knowledge": [
"K3-2-1-01",
"K3-2-1-02"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-2-E06",
"type": "例题",
"content": "判断下列函数的奇偶性:(1) f(x)=x⁴; (2) f(x)=x⁵; (3) f(x)=x+1/x; (4) f(x)=1/x².",
"knowledge": [
"K3-2-2-01"
],
"methods": [
"M3-2-02"
]
},
{
"id": "T3-3-E01",
"type": "例题",
"content": "证明幂函数 f(x)=√x 是增函数。",
"knowledge": [
"K3-3-01",
"K3-2-1-01"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-4-E01",
"type": "例题",
"content": "设小王的专项扣除比例、专项附加扣除金额、依法确定的其他扣除金额与3.1.2例8相同,全年综合所得收入额为x(单位:元),应缴纳综合所得个税税额为y(单位:元). (1) 求y关于x的函数解析式; (2) 如果小王全年的综合所得由117 600元增加到153 600元,那么他全年应缴纳多少综合所得个税?",
"knowledge": [
"K3-1-2-02"
],
"methods": []
},
{
"id": "T3-4-E02",
"type": "例题",
"content": "一辆汽车在某段路程中行驶的平均速率 v (单位: km/h) 与时间 t (单位: h) 的关系如图3.4-1 所示,(1) 求图3.4-1中阴影部分的面积,并说明所求面积的实际含义; (2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数 s (单位: km) 与时间 t 的函数解析式,并画出相应的图象.",
"knowledge": [
"K3-1-2-01",
"K3-1-2-02"
],
"methods": []
},
{
"id": "T4-1-E01",
"type": "例题",
"content": "求下列各式的值: (1) ³√((-8)³); (2) √((-10)²); (3) ⁴√((3-π)⁴); (4) √((a-b)²).",
"knowledge": [
"K4-1-1-01"
],
"methods": []
},
{
"id": "T4-1-E02",
"type": "例题",
"content": "求值: (1) 8^(2/3); (2) (16/81)^(-3/4)。",
"knowledge": [
"K4-1-1-02"
],
"methods": []
},
{
"id": "T4-1-E03",
"type": "例题",
"content": "用分数指数幂的形式表示并计算下列各式(其中a>0): (1) a² · ³√a²; (2) √(a ³√a)。",
"knowledge": [
"K4-1-1-02"
],
"methods": []
},
{
"id": "T4-1-E04",
"type": "例题",
"content": "计算下列各式(式中字母均是正数): (1) (2a^(2/3)b^(1/2))(-6a^(1/2)b^(1/3)) ÷ (-3a^(1/6)b^(5/6)); (2) (m^(1/4)n^(-3/8))^8; (3) (³√a² - √a) ÷ ⁴√a².",
"knowledge": [
"K4-1-1-02"
],
"methods": []
},
{
"id": "T4-2-E01",
"type": "例题",
"content": "已知指数函数 f(x)=a^x (a>0, 且 a≠1), 且 f(3)=π, 求 f(0), f(1), f(-3) 的值.",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-2-E02",
"type": "例题",
"content": "(1)在问题1中, 如果平均每位游客出游一次可给当地带来1000元(不含门票)的收入, A地景区的门票价格为150元, 比较这15年间 A, B两地旅游收入变化情况. (2)在问题2中, 某生物死亡10000年后, 它体内碳14的含量衰减为原来的百分之几?",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-2-E03",
"type": "例题",
"content": "比较下列各题中两个值的大小:(1) 1.7^2.5, 1.7^3; (2) 0.8^-√2, 0.8^-√3; (3) 1.7^0.3, 0.9^3.1.",
"knowledge": [
"K4-2-2-01"
],
"methods": []
},
{
"id": "T4-2-E04",
"type": "例题",
"content": "如图4.2-7, 某城市人口呈指数增长。 (1) 根据图象,估计该城市人口每翻一番所需的时间 (倍增期); (2) 该城市人口从80万人开始,经过20年会增长到多少万人?",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-3-E01",
"type": "例题",
"content": "把下列指数式化为对数式,对数式化为指数式:(1) 5⁴=625; (2) 2⁻⁶=1/64; (3) (1/3)ᵐ=5.73; (4) log₁/₂16 = -4; (5) lg 0.01 = -2; (6) ln 10 = n.",
"knowledge": [
"K4-3-1-01"
],
"methods": []
},
{
"id": "T4-3-E02",
"type": "例题",
"content": "求下列各式中 x 的值: (1) log₆₄ x = -2/3; (2) logₓ 8 = 6; (3) lg 100 = x; (4) -ln e² = x.",
"knowledge": [
"K4-3-1-01"
],
"methods": []
},
{
"id": "T4-3-E03",
"type": "例题",
"content": "求下列各式的值: (1) lg ⁵√100; (2) log₂(4⁷ × 2⁵).",
"knowledge": [
"K4-3-2-01"
],
"methods": []
},
{
"id": "T4-3-E04",
"type": "例题",
"content": "用 lnx, lny, lnz 表示 ln(x²√y / ³√z).",
"knowledge": [
"K4-3-2-01"
],
"methods": []
},
{
"id": "T4-3-E05",
"type": "例题",
"content": "地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为 lgE=4.8+1.5M. 2011年3月11日,日本东北部海域发生里氏9.0级地震,它所释放出来的能量是2008年5月12日我国汶川发生里氏8.0级地震的多少倍(精确到1)?",
"knowledge": [
"K4-3-1-01",
"K4-3-2-01"
],
"methods": []
},
{
"id": "T4-4-E01",
"type": "例题",
"content": "求下列函数的定义域: (1) y=log₃x²; (2) y=logₐ(4-x) (a>0, 且 a≠1).",
"knowledge": [
"K4-4-1-01"
],
"methods": []
},
{
"id": "T4-4-E02",
"type": "例题",
"content": "假设某地初始物价为1,每年以5%的增长率递增,经过 t 年后的物价为 w。 (1) 该地的物价经过几年后会翻一番? (2) 填写下表,并根据表中的数据,说明该地物价的变化规律。| 物价w | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 年数t | 0 | | | | | | | | | |",
"knowledge": [
"K4-4-1-01",
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-4-E03",
"type": "例题",
"content": "比较下列各题中两个值的大小: (1) log₂3.4, log₂8.5; (2) log₀.₃1.8, log₀.₃2.7; (3) logₐ5.1, logₐ5.9 (a>0, 且 a≠1).",
"knowledge": [
"K4-4-2-01"
],
"methods": []
},
{
"id": "T4-4-E04",
"type": "例题",
"content": "溶液酸碱度的测量。pH的计算公式为pH=-lg[H⁺],其中 [H⁺] 表示溶液中氢离子的浓度。 (1) 说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系; (2) 已知纯净水中氢离子的浓度为 [H⁺]=10⁻⁷摩尔/升,计算纯净水的pH。",
"knowledge": [
"K4-4-2-01",
"K4-3-2-01"
],
"methods": []
},
{
"id": "T4-5-E01",
"type": "例题",
"content": "求方程 ln(x) + 2x - 6 = 0 的实数解的个数。",
"knowledge": [
"K4-5-1-01",
"K4-5-1-02",
"K3-2-1-01"
],
"methods": []
},
{
"id": "T4-5-E02",
"type": "例题",
"content": "借助信息技术,用二分法求方程 2^x+3x=7 的近似解(精确度为0.1).",
"knowledge": [
"K4-5-1-01"
],
"methods": [
"M4-5-01"
]
},
{
"id": "T4-5-E03",
"type": "例题",
"content": "使用马尔萨斯人口增长模型 y=y₀e^(rt) 解决以下问题:1. 根据中国1950年(55196万)和1959年(67207万)的人口数据,建立该期间的人口增长模型。2. 利用模型计算1951-1958年的人口,并与实际数据比较。3. 预测中国人口达到13亿的时间。",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-5-E04",
"type": "例题",
"content": "2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裹泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,能否以此推断此水坝大概是什么年代建成的?(碳14半衰期为5730年)",
"knowledge": [
"K4-2-1-01",
"K4-3-1-01"
],
"methods": []
},
{
"id": "T4-5-E05",
"type": "例题",
"content": "假设你有一笔资金用于投资, 现有三种投资方案供你选择, 这三种方案的回报如下: 方案一: 每天回报40元; 方案二: 第一天回报10元, 以后每天比前一天多回报10元; 方案三: 第一天回报0.4元, 以后每天的回报比前一天翻一番. 请问, 你会选择哪种投资方案?",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-5-E06",
"type": "例题",
"content": "某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(万元)随销售利润x(万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x, y=log₇x+1, y=1.002^x,其中哪个模型能符合公司的要求?",
"knowledge": [
"K4-2-2-01",
"K4-4-2-01",
"K3-2-1-02"
],
"methods": []
},
{
"id": "T5-1-E01",
"type": "例题",
"content": "在0°到360°的范围内找出与-950°12'终边相同的角。",
"knowledge": [
"K5-1-1-03"
],
"methods": []
},
{
"id": "T5-1-E02",
"type": "例题",
"content": "写出终边在y轴上的角的集合S。",
"knowledge": [
"K5-1-1-02",
"K5-1-1-03"
],
"methods": []
},
{
"id": "T5-1-E03",
"type": "例题",
"content": "写出终边在直线 y=x 上的角的集合 S. S 中满足不等式 -360° ≤ β < 720° 的元素 β 有哪些?",
"knowledge": [
"K5-1-1-02",
"K5-1-1-03"
],
"methods": []
},
{
"id": "T5-1-E04",
"type": "例题",
"content": "按照下列要求,把 67°30' 化成弧度:(1) 精确值;(2) 精确到 0.001 的近似值。",
"knowledge": [
"K5-1-2-02"
],
"methods": []
},
{
"id": "T5-1-E05",
"type": "例题",
"content": "将 3.14 rad 换算成角度 (用度数表示, 精确到 0.001)。",
"knowledge": [
"K5-1-2-02"
],
"methods": []
},
{
"id": "T5-1-E06",
"type": "例题",
"content": "利用弧度制证明下列关于扇形的公式: (1) l=αR; (2) S=½αR²; (3) S=½lR.",
"knowledge": [
"K5-1-2-01",
"K5-1-2-03"
],
"methods": []
},
{
"id": "T5-2-E01",
"type": "例题",
"content": "求 5π/3 的正弦、余弦和正切值。",
"knowledge": [
"K5-2-1-01"
],
"methods": []
},
{
"id": "T5-2-E02",
"type": "例题",
"content": "设α是一个任意角,它的终边上任意一点P(不与原点O重合)的坐标为(x,y),点P与原点的距离为r。求证:sinα=y/r,cosα=x/r,tanα=y/x。",
"knowledge": [
"K5-2-1-01"
],
"methods": []
},
{
"id": "T5-2-E03",
"type": "例题",
"content": "求证: 角θ为第三象限角的充要条件是 {sinθ<0, tanθ>0}.",
"knowledge": [
"K1-4-04",
"K5-2-1-02"
],
"methods": [
"M1-4-01"
]
},
{
"id": "T5-2-E04",
"type": "例题",
"content": "确定下列三角函数值的符号,然后用计算工具验证: (1) cos 250°; (2) sin(-π/4); (3) tan(-672°); (4) tan 3π.",
"knowledge": [
"K5-2-1-02",
"K5-3-01"
],
"methods": []
},
{
"id": "T5-2-E05",
"type": "例题",
"content": "求下列三角函数值: (1) sin 1480°10' (精确到 0.001); (2) cos(9π/4); (3) tan(-11π/6).",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-2-E06",
"type": "例题",
"content": "已知 sin α = -3/5, 求 cos α, tan α 的值.",
"knowledge": [
"K5-2-2-01",
"K5-2-1-02"
],
"methods": []
},
{
"id": "T5-2-E07",
"type": "例题",
"content": "求证: cos(x)/(1 - sin(x)) = (1 + sin(x))/cos(x).",
"knowledge": [
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-3-E01",
"type": "例题",
"content": "利用公式求下列三角函数值: (1) cos 225°; (2) sin(8π/3); (3) sin(-16π/3); (4) tan(-2040°).",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-3-E02",
"type": "例题",
"content": "化简 (cos(180°+α)sin(α+360°))/(tan(-α-180°)cos(-180°+α)).",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-3-E03",
"type": "例题",
"content": "证明: (1) sin(3π/2 - α) = -cosα; (2) cos(3π/2 + α) = sinα.",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-3-E04",
"type": "例题",
"content": "化简 sin(2π-α)cos(π+α)cos(π/2+α)cos(11π/2-α) / [cos(π-α)sin(3π-α)sin(-π-α)sin(9π/2+α)].",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-3-E05",
"type": "例题",
"content": "已知 sin(53°-α)=1/5, 且 -270°<α<-90°, 求 sin(37°+α) 的值.",
"knowledge": [
"K5-3-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-4-E01",
"type": "例题",
"content": "画出下列函数的简图: (1) y=1+sin x, x∈[0, 2π]; (2) y=-cos x, x∈[0, 2π].",
"knowledge": [
"K5-4-1-01"
],
"methods": [
"M5-6-01"
]
},
{
"id": "T5-4-E02",
"type": "例题",
"content": "求下列函数的周期: (1) y=3sin x, x∈R; (2) y=cos 2x, x∈R; (3) y=2sin(x/2 - π/6), x∈R.",
"knowledge": [
"K5-4-2-01"
],
"methods": []
},
{
"id": "T5-4-E03",
"type": "例题",
"content": "下列函数有最大值、最小值吗? 如果有, 请写出取最大值、最小值时自变量 x 的集合, 并求出最大值、最小值. (1) y=cos x+1, x∈R; (2) y=-3sin 2x, x∈R.",
"knowledge": [
"K5-4-2-02"
],
"methods": []
},
{
"id": "T5-4-E04",
"type": "例题",
"content": "不通过求值,比较下列各组数的大小: (1) sin(-π/18) 与 sin(-π/10); (2) cos(-23π/5) 与 cos(-17π/4).",
"knowledge": [
"K5-4-2-02",
"K5-3-01"
],
"methods": []
},
{
"id": "T5-4-E05",
"type": "例题",
"content": "求函数 y=sin(x/2+π/3), x∈[-2π, 2π] 的单调递增区间.",
"knowledge": [
"K5-4-2-02"
],
"methods": []
},
{
"id": "T5-4-E06",
"type": "例题",
"content": "求函数 y=tan(π/2*x+π/3) 的定义域、周期及单调区间。",
"knowledge": [
"K5-4-3-01"
],
"methods": []
},
{
"id": "T5-5-E01",
"type": "例题",
"content": "利用公式 C(α-β) 证明:(1) cos(π/2 - α) = sinα; (2) cos(π-α) = -cosα.",
"knowledge": [
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-5-E02",
"type": "例题",
"content": "已知 sinα=4/5, α∈(π/2, π), cosβ=-5/13, β是第三象限角, 求 cos(α-β) 的值。",
"knowledge": [
"K5-5-1-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-5-E03",
"type": "例题",
"content": "已知 sinα = -3/5,α 是第四象限角,求 sin(π/4 - α), cos(π/4 + α), tan(α - π/4) 的值.",
"knowledge": [
"K5-5-1-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-5-E04",
"type": "例题",
"content": "利用和(差)角公式计算下列各式的值: (1) sin72°cos42°-cos72°sin42°; (2) cos20°cos70°-sin20°sin70°; (3) (1+tan15°)/(1-tan15°).",
"knowledge": [
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-5-E05",
"type": "例题",
"content": "已知 sin2α=5/13, π/4 < α < π/2, 求 sin4α, cos4α, tan4α 的值.",
"knowledge": [
"K5-5-3-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-5-E06",
"type": "例题",
"content": "在△ABC中,cosA = 4/5, tanB = 2,求 tan(2A+2B) 的值.",
"knowledge": [
"K5-5-1-01",
"K5-5-3-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-5-E07",
"type": "例题",
"content": "试以 cosα 表示 sin²(α/2), cos²(α/2), tan²(α/2).",
"knowledge": [
"K5-5-3-01"
],
"methods": []
},
{
"id": "T5-5-E08",
"type": "例题",
"content": "求证: (1) sinαcosβ = 1/2[sin(α+β)+sin(α-β)]; (2) sinθ+sinφ = 2sin((θ+φ)/2)cos((θ-φ)/2).",
"knowledge": [
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-5-E09",
"type": "例题",
"content": "化简:sin(x + π/3) + sin(x - π/3).",
"knowledge": [
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-5-E10",
"type": "例题",
"content": "如图,在 Rt△ABC 中,∠C=90°, AC=2, ∠BAC=α, (0<α<π/3), 求矩形 ABCD 的面积 S 的最大值.",
"knowledge": [
"K5-5-3-01"
],
"methods": []
},
{
"id": "T5-6-E01",
"type": "例题",
"content": "画出函数 y=2sin(3x-π/6) 的简图。",
"knowledge": [
"K5-6-01"
],
"methods": [
"M5-6-01",
"M5-6-02"
]
},
{
"id": "T5-6-E02",
"type": "例题",
"content": "已知函数 y=sin(x-π/4) 的部分图象如图,则 A,B,C,D,E 各点的坐标分别为 A(π/4, 0), B(3π/4, 1), C(5π/4, 0), D(7π/4, -1), E(9π/4, 0)。",
"knowledge": [
"K5-6-01",
"K5-4-2-02"
],
"methods": [
"M5-6-01"
]
},
{
"id": "T5-6-E03",
"type": "例题",
"content": "在长为1m的细绳一端系上一个小球,以另一端为圆心在竖直平面内做圆周运动,小球的起始位置在最低点,经过ts后,小球转过的角度为θ=t+π/2(rad). (1)经过多少时间,小球到达最高点? (2)经过多少时间,小球的高度第一次达到0.5m?",
"knowledge": [
"K5-6-01"
],
"methods": []
},
{
"id": "T5-6-E04",
"type": "例题",
"content": "摩天轮的半径为55m,最高点距地面120m。摩天轮运行一周约需30min。在摩天轮上,甲、乙两人从不同位置开始计时,经过ts后,甲、乙两人距离地面的高度分别为h_甲=65+55sin(πt/15 - π/2), h_乙=65+55sin(πt/15 + π/6)。求t为何值时,两人距离地面的高度差最大?",
"knowledge": [
"K5-6-01",
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-7-P1",
"type": "问题",
"content": "某个弹簧振子在完成一次全振动的过程中,时间t(单位:s)与位移y(单位:mm)之间的对应数据如表5.7-1所示,试根据这些数据确定这个振子的位移关于时间的函数解析式。",
"knowledge": [
"K5-6-01"
],
"methods": []
},
{
"id": "T5-7-P2",
"type": "问题",
"content": "图5.7-2(1)是某次实验测得的交变电流i(单位:A)随时间t(单位:s)变化的图象。将测得的图象放大,得到图5.7-2(2)。(1)求电流i随时间t变化的函数解析式;(2)当t=0, 1/600, 1/150, 7/600, 1/60时,求电流i。",
"knowledge": [
"K5-6-01"
],
"methods": []
},
{
"id": "T5-7-E01",
"type": "例题",
"content": "如图5.7-3, 某地一天从6~14时的温度变化曲线近似满足函数 y=Asin(ωx+φ)+b. 1. 求这一天6~14时的最大温差; 2. 写出这段曲线的函数解析式.",
"knowledge": [
"K5-6-01"
],
"methods": []
},
{
"id": "T5-7-E02",
"type": "例题",
"content": "海水受日月的引力,在一定的时候发生涨落的现象叫潮。表5.7-2是某港口某天的时刻与水深关系的预报。 (1) 选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值。 (2) 一条货船的吃水深度为4m,安全间隙1.5m,该船这一天何时能进入港口?在港口能待多久? (3) 某船吃水深度为4m,安全间隙1.5m,该船2:00开始卸货,吃水深度以0.3m/h减少,为了安全,需在水深与船所需安全水深相等时刻前0.4h停止卸货并离港,问何时停止卸货离港?",
"knowledge": [
"K5-6-01"
],
"methods": []
}
]
}